On periodic groups isospectral to \(A_7\)

The spectrum of a periodic group \(G\) is the set \(\omega(G)\) of its element orders. Consider a group \(G\) such that \(\omega(G)=\omega(A_7)\). Assume that \(G\) has a subgroup \(H\) isomorphic to \(A_4\), whose involutions are squares of elements of order \(4\). We prove that either \(O_2(H) \su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-10
1. Verfasser: Mamontov, Andrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spectrum of a periodic group \(G\) is the set \(\omega(G)\) of its element orders. Consider a group \(G\) such that \(\omega(G)=\omega(A_7)\). Assume that \(G\) has a subgroup \(H\) isomorphic to \(A_4\), whose involutions are squares of elements of order \(4\). We prove that either \(O_2(H) \subseteq O_2(G)\) or \(G\) has a finite nonabelian simple subgroup.
ISSN:2331-8422