On periodic groups isospectral to \(A_7\)
The spectrum of a periodic group \(G\) is the set \(\omega(G)\) of its element orders. Consider a group \(G\) such that \(\omega(G)=\omega(A_7)\). Assume that \(G\) has a subgroup \(H\) isomorphic to \(A_4\), whose involutions are squares of elements of order \(4\). We prove that either \(O_2(H) \su...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The spectrum of a periodic group \(G\) is the set \(\omega(G)\) of its element orders. Consider a group \(G\) such that \(\omega(G)=\omega(A_7)\). Assume that \(G\) has a subgroup \(H\) isomorphic to \(A_4\), whose involutions are squares of elements of order \(4\). We prove that either \(O_2(H) \subseteq O_2(G)\) or \(G\) has a finite nonabelian simple subgroup. |
---|---|
ISSN: | 2331-8422 |