LaBonte's method revisited: An effective steepest descent method for micromagnetic energy minimization

We present a steepest descent energy minimization scheme for micromagnetics. The method searches on a curve that lies on the sphere which keeps the magnitude of the magnetization vector constant. The step size is selected according to a modified Barzilai-Borwein method. Standard linear tetrahedral f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-05, Vol.115 (17)
Hauptverfasser: Exl, Lukas, Bance, Simon, Reichel, Franz, Schrefl, Thomas, Peter Stimming, Hans, Mauser, Norbert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a steepest descent energy minimization scheme for micromagnetics. The method searches on a curve that lies on the sphere which keeps the magnitude of the magnetization vector constant. The step size is selected according to a modified Barzilai-Borwein method. Standard linear tetrahedral finite elements are used for space discretization. For the computation of quasistatic hysteresis loops, the steepest descent minimizer is faster than a Landau-Lifshitz micromagnetic solver by more than a factor of two. The speed up on a graphic processor is 4.8 as compared to the fastest single-core central processing unit (CPU) implementation.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4862839