LaBonte's method revisited: An effective steepest descent method for micromagnetic energy minimization
We present a steepest descent energy minimization scheme for micromagnetics. The method searches on a curve that lies on the sphere which keeps the magnitude of the magnetization vector constant. The step size is selected according to a modified Barzilai-Borwein method. Standard linear tetrahedral f...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2014-05, Vol.115 (17) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a steepest descent energy minimization scheme for micromagnetics. The method searches on a curve that lies on the sphere which keeps the magnitude of the magnetization vector constant. The step size is selected according to a modified Barzilai-Borwein method. Standard linear tetrahedral finite elements are used for space discretization. For the computation of quasistatic hysteresis loops, the steepest descent minimizer is faster than a Landau-Lifshitz micromagnetic solver by more than a factor of two. The speed up on a graphic processor is 4.8 as compared to the fastest single-core central processing unit (CPU) implementation. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4862839 |