A novel tape spring hinge mechanism for quasi-static deployment of a satellite deployable using shape memory alloy

A tape spring hinge (TSH) is a typical flexible deployment device for a satellite and becomes frequently used due to its simplicity, lightweight, low cost, and high deployment reliability. However, the performance of a TSH is quite limited due to trade-offs among deployed stiffness, deployment torqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2014-02, Vol.85 (2), p.025001-025001
Hauptverfasser: Jeong, Ju Won, Yoo, Young Ik, Shin, Dong Kil, Lim, Jae Hyuk, Kim, Kyung Won, Lee, Jung Ju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A tape spring hinge (TSH) is a typical flexible deployment device for a satellite and becomes frequently used due to its simplicity, lightweight, low cost, and high deployment reliability. However, the performance of a TSH is quite limited due to trade-offs among deployed stiffness, deployment torque, and latch-up shock despite its many advantages. In this study, a novel conceptual design that circumvents the trade-offs among functional requirements (FRs) is proposed. The trade-offs are obviated by a newly proposed shape memory alloy damper that converts the deployment behavior of a conventional TSH from unstable dynamic to stable quasi-static. This makes it possible to maximize the deployment stiffness and deployment torque of a conventional TSH, which are larger-the-better FR, without any increase in the latch-up shock. Therefore, in view of conceptual design, it is possible to design a highly improved TSH that has much higher deployed stiffness and deployment torque compared to a conventional TSH while minimizing latch-up shock and deployment unstableness. Detailed design was performed through response surface method and finite element analysis. Finally, a prototype was manufactured and tested in order to verify its performance (four point, deployment torque, and latch-up shock tests). The test results confirm the feasibility of the proposed TSH mechanism.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.4862470