Investigation of TiOx barriers for their use in hybrid Josephson and tunneling junctions based on pnictide thin films

We tested oxidized titanium layers as barriers for hybrid Josephson junctions with high IcRn-products and for the preparation of junctions for tunneling spectroscopy. For that we firstly prepared junctions with conventional superconductor electrodes, such as lead and niobium, respectively. By tuning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-02, Vol.115 (8)
Hauptverfasser: Döring, S, Monecke, M, Schmidt, S, Schmidl, F, Tympel, V, Engelmann, J, Kurth, F, Iida, K, Haindl, S, Mönch, I, Holzapfel, B, Seidel, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We tested oxidized titanium layers as barriers for hybrid Josephson junctions with high IcRn-products and for the preparation of junctions for tunneling spectroscopy. For that we firstly prepared junctions with conventional superconductor electrodes, such as lead and niobium, respectively. By tuning the barrier thickness, we were able to change the junction's behavior from a Josephson junction to tunnel-like behavior applicable for quasi-particle spectroscopy. Subsequently, we transferred the technology to junctions using Co-doped BaFe2As2 thin films prepared by pulsed laser deposition as base electrode and evaporated Pb as counter electrode. For barriers with a thickness of 1.5 nm, we observe clear Josephson effects with IcRn≈90 μV at 4.2 K. These junctions behave SNS'-like (SNS: superconductor-normal conductor-superconductor) and are dominated by Andreev reflection transport mechanism. For junctions with barrier thickness of 2.0 nm and higher, no Josephson but SIS'- (SIS: superconductor-insulator-superconductor) or SINS'-like (SINS: superconductor-normal conductor-insulator-superconductor) behavior with a tunnel-like conductance spectrum was observed.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4863172