Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis

We describe an integrated opto-aerodynamic system and demonstrate that it enables us to trap absorbing airborne micron-size particles from air, hold them and then release them, and to repeat this sequence many times as would be appropriate for continuous sampling of particles from air. The key parts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2014-03, Vol.104 (11)
Hauptverfasser: Pan, Yong-Le, Wang, Chuji, Hill, Steven C., Coleman, Mark, Beresnev, Leonid A., Santarpia, Joshua L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe an integrated opto-aerodynamic system and demonstrate that it enables us to trap absorbing airborne micron-size particles from air, hold them and then release them, and to repeat this sequence many times as would be appropriate for continuous sampling of particles from air. The key parts of the system are a conical photophoretic optical trap and a counter-flow coaxial-double-nozzle that concentrates and then slows particles for trapping. This technology should be useful for on-line applications that require monitoring (by single particle analyses) of a series of successively arriving particles (e.g., from the atmosphere or pharmaceutical or other production facilities) where the total sampling time may last from minutes to days, but where each particle must be held for a short time for measurements (e.g., Raman scattering).
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4869105