Two-dimensional nanostructured Y2O3 particles for viscosity modification
Nanoparticle additives have been shown to improve the mechanical and transport phenomena of various liquids; however, little has been done to try and explain the rheological modifications provided from such modifications from a theoretical standpoint. Here, we report a non-Einstein-like reduction of...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-04, Vol.104 (16) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanoparticle additives have been shown to improve the mechanical and transport phenomena of various liquids; however, little has been done to try and explain the rheological modifications provided from such modifications from a theoretical standpoint. Here, we report a non-Einstein-like reduction of viscosity of mineral oil with the utilization of yttrium oxide nanosheet additives. Experimental results, coupled with generalized smoothed-particle hydrodynamics simulations, provide insight into the mechanism behind this reduction of fluid shear stress. The ordered inclination of these two-dimensional nanoparticle additives markedly improves the lubricating properties of the mineral oil, ultimately reducing the friction, and providing a way in designing and understanding next generation of lubricants. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4873119 |