Formation of TiO2 nanorods by ion irradiation

Ion beam irradiation is a powerful method to fabricate and tailor the nanostructured surface of materials. Nanorods on the surface of single crystal rutile TiO2 were formed by N+ ion irradiation. The dependence of nanorod morphology on ion fluence and energy was elaborated. With increasing ion fluen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-05, Vol.115 (18)
Hauptverfasser: Zheng, X. D., Ren, F., Cai, G. X., Hong, M. Q., Xiao, X. H., Wu, W., Liu, Y. C., Li, W. Q., Ying, J. J., Jiang, C. Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ion beam irradiation is a powerful method to fabricate and tailor the nanostructured surface of materials. Nanorods on the surface of single crystal rutile TiO2 were formed by N+ ion irradiation. The dependence of nanorod morphology on ion fluence and energy was elaborated. With increasing ion fluence, nanopores grow in one direction perpendicular to the surface and burst finally to form nanorods. The length of nanorods increases with increasing ion energy under same fluence. The development of the nanorod structure is originated from the formation of the nanopores while N2 bubbles and aggregation of vacancies were responsible for the formation of nanopores and nanorods. Combining C+ ion irradiation and post-irradiation annealing experiments, two qualitative models are proposed to explain the formation mechanism of these nanorods.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4876120