Alternative current conduction mechanisms of organic-inorganic compound [N(CH3)3H]2CuCl4

The [N(CH3)3H]2CuCl4 single crystal has been analyzed by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and electrical impedance spectroscopy. [N(CH3)3H]2CuCl4 crystallizes at room temperature in the monoclinic system with P21/C space group. Three phase transitions at T1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-05, Vol.115 (20)
Hauptverfasser: Ben Bechir, M., Karoui, K., Tabellout, M., Guidara, K., Ben Rhaiem, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The [N(CH3)3H]2CuCl4 single crystal has been analyzed by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and electrical impedance spectroscopy. [N(CH3)3H]2CuCl4 crystallizes at room temperature in the monoclinic system with P21/C space group. Three phase transitions at T1 = 226 K, T2 = 264 K, and T3 = 297 K have been evidenced by DSC measurements. The electrical technique was measured in the 10−1–107 Hz frequency range and 203–313 K temperature intervals. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law (developed). The AC electrical conduction in [N(CH3)3H]2CuCl4 compound is studied by two processes which can be attributed to a hopping transport mechanism: the correlated barrier hopping model in phases I, II, and III, the non-overlapping small polaron tunneling model in phase IV. The conduction mechanism is interpreted with the help of Elliot's theory, and the Elliot's parameters are found.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4880735