Compact bubble clusters in Newtonian and non-Newtonian liquids

We studied the terminal velocity of a packed array of bubbles, a bubble cluster, rising in different fluids: a Newtonian fluid, an elastic fluid with nearly constant viscosity (Boger fluid), and a viscoelastic fluid with a shear dependent viscosity, for small but finite Reynolds numbers (1 × 10−4 &l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2014-05, Vol.26 (5)
Hauptverfasser: Vélez-Cordero, J. Rodrigo, Lantenet, Johanna, Hernández-Cordero, Juan, Zenit, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied the terminal velocity of a packed array of bubbles, a bubble cluster, rising in different fluids: a Newtonian fluid, an elastic fluid with nearly constant viscosity (Boger fluid), and a viscoelastic fluid with a shear dependent viscosity, for small but finite Reynolds numbers (1 × 10−4 < Re < 4). In all three cases, the cluster velocity increased with the total volume, following the same trend as single bubbles. For the case of clusters in elastic fluids, interestingly, the so-called velocity discontinuity was not observed, unlike the single bubble case. In addition to the absence of jump velocity, the clusters did not show the typical teardrop shape of large bubbles in viscoelastic fluids and the strength of the negative wake is much weaker than the one observed behind single bubbles. Dimensional analysis of the volume-velocity plots allowed us to show that, while the equivalent diameter (obtained from the total cluster volume) is the appropriate length to determine buoyancy forces and characteristic shear rates, the individual bubble size is the appropriate scale to account for surface forces.
ISSN:1070-6631
1089-7666
DOI:10.1063/1.4874630