A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses

Cloud detection in optical remote sensing images is a crucial problem because undetected clouds can produce misleading results in the analyses of surface and atmospheric parameters. Sentinel-2 provides high spatial resolution satellite data distributed with associated cloud masks. In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2018-11, Vol.217, p.426-443
Hauptverfasser: Coluzzi, Rosa, Imbrenda, Vito, Lanfredi, Maria, Simoniello, Tiziana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cloud detection in optical remote sensing images is a crucial problem because undetected clouds can produce misleading results in the analyses of surface and atmospheric parameters. Sentinel-2 provides high spatial resolution satellite data distributed with associated cloud masks. In this paper, we evaluate the ability of Sentinel-2 Level-1C cloud mask products to discriminate clouds over a variety of biogeographic scenarios and in different cloudiness conditions. Reference cloud masks for the identification of misdetection were generated by applying a local thresholding method that analyses Sentinel-2 Band 2 (0.490 μm) and Band 10 (1.375 μm) separately; histogram-based thresholds were locally tuned by checking the single bands and the natural color composite (B4B3B2); in doubtful cases, NDVI and DEM were also analyzed to refine the masks; the B2B11B12 composite was used to separate snow. The analysis of the cloud classification errors obtained for our test sites allowed us to get important inferences of general value. The L1C cloud mask generally underestimated the presence of clouds (average Omission Error, OE, 37.4%); this error increased (OE > 50%) for imagery containing opaque clouds with a large transitional zone (between the cloud core and clear areas) and cirrus clouds, fragmentation emerged as a major source of omission errors (R2 0.73). Overestimation was prevalently found in the presence of holes inside the main cloud bodies. Two extreme environments were particularly critical for the L1C cloud mask product. Detection over Amazonian rainforests was highly inefficient (OE > 70%) due to the presence of complex cloudiness and high water vapor content. On the other hand, Alpine orography under dry atmosphere created false cirrus clouds. Altogether, cirrus detection was the most inefficient. According to our results, Sentinel-2 L1C users should take some simple precautions while waiting for ESA improved cloud detection products. •First assessment of the Sentinel-2 L1C cloud mask product in different ecoregions•Cloud configuration and complexity determine most misclassification errors.•The performance of the L1C cloud mask is low in critical environmental conditions.•Cirrus clouds are confirmed to be the most difficult to be detected.•Practical precautions are suggested to minimize effects on surface analyses.
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2018.08.009