Computer-aided design of three terminal (3T-) zig-zag SWCNT junctions and nanotube architectures
Construction of topologically accurate models of nanotube junctions is essential for the determination of its thermal, mechanical and electronic properties. Most of the earlier nanotube junction models have been based on molecular dynamics (MD) simulations and heuristic methods which are either comp...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2018-09, Vol.166, p.36-45 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Construction of topologically accurate models of nanotube junctions is essential for the determination of its thermal, mechanical and electronic properties. Most of the earlier nanotube junction models have been based on molecular dynamics (MD) simulations and heuristic methods which are either computationally expensive or impossible to model large 3D structures. CAD based approach that uses triangular meshes with remeshing strategies and have desired mesh optimization capability are found to be ideal to generate 3T-nanotube junctions with generic predefined orientation of nanotubes and accurate topological features. These 3T-junctions can be considered as building blocks and can be replicated in multiple directions to build complex nanotube architectures, which are shown via two examples for generating 2D and 3D microstructures by replication, translation, and rotation of a fused 3T-junction. |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/j.compscitech.2018.01.004 |