Holographic model for the anomalous scalings of the cuprates

We examine transport in a holographic model in which the dynamics of the charged degrees of freedom is described by the nonlinear Dirac-Born-Infeld (DBI) action. Axionic scalar fields are included to break translational invariance and generate momentum dissipation in the system. Scaling exponents ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-03, Vol.97 (6), Article 061901
Hauptverfasser: Blauvelt, Erin, Cremonini, Sera, Hoover, Anthony, Li, Li, Waskie, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine transport in a holographic model in which the dynamics of the charged degrees of freedom is described by the nonlinear Dirac-Born-Infeld (DBI) action. Axionic scalar fields are included to break translational invariance and generate momentum dissipation in the system. Scaling exponents are introduced by using geometries which are nonrelativistic and hyperscaling-violating in the infrared. In the probe DBI limit the theory reproduces the anomalous temperature dependence of the resistivity and Hall angle of the cuprate strange metals, ρ∼T and cotΘH∼T2. These scaling laws would not be present without the nonlinear dynamics encoded by the DBI interactions. We further show that because of its richness the DBI theory supports a wide spectrum of temperature scalings. This model provides explicit examples in which transport is controlled by different relaxation times. On the other hand, when only one quantity sets the temperature scale of the system, the Hall angle and conductivity typically exhibit the same temperature behavior. We illustrate this point using new fully backreacted analytical dyonic black brane solutions.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.97.061901