Koszul–Tate resolutions as cofibrant replacements of algebras over differential operators

Homotopical geometry over differential operators is a convenient setting for a coordinate-free investigation of nonlinear partial differential equations modulo symmetries. One of the first issues one meets in the functor of points approach to homotopical D -geometry, is the question of a model struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of homotopy and related structures 2018-12, Vol.13 (4), p.793-846
Hauptverfasser: di Brino, Gennaro, Pištalo, Damjan, Poncin, Norbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Homotopical geometry over differential operators is a convenient setting for a coordinate-free investigation of nonlinear partial differential equations modulo symmetries. One of the first issues one meets in the functor of points approach to homotopical D -geometry, is the question of a model structure on the category DGAlg ( D ) of differential non-negatively graded O -quasi-coherent sheaves of commutative algebras over the sheaf D of differential operators of an appropriate underlying variety ( X , O ) . We define a cofibrantly generated model structure on DGAlg ( D ) via the definition of its weak equivalences and its fibrations, characterize the class of cofibrations, and build an explicit functorial ‘cofibration–trivial fibration’ factorization. We then use the latter to get a functorial model categorical Koszul–Tate resolution for D -algebraic ‘on-shell function’ algebras (which contains the classical Koszul–Tate resolution). The paper is also the starting point for a homotopical D -geometric Batalin–Vilkovisky formalism.
ISSN:2193-8407
1512-2891
DOI:10.1007/s40062-018-0202-x