Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis : Evidence for involvement of the renin-angiotensin system

Angiotensin II activates NAD(P)H-dependent oxidases via AT1-receptor stimulation, the most important vascular source of superoxide (O2*-). The AT1 receptor is upregulated in vitro by low-density lipoprotein. The present study was designed to test whether hypercholesterolemia is associated with incre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 1999-04, Vol.99 (15), p.2027-2033
Hauptverfasser: WARNHOLTZ, A, NICKENIG, G, BÖHM, M, MEINERTZ, T, MÜNZEL, T, SCHULZ, E, MACHARZINA, R, BRÄSEN, J. H, SKATCHKOV, M, HEITZER, T, STASCH, J. P, GRIENDLING, K. K, HARRISON, D. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Angiotensin II activates NAD(P)H-dependent oxidases via AT1-receptor stimulation, the most important vascular source of superoxide (O2*-). The AT1 receptor is upregulated in vitro by low-density lipoprotein. The present study was designed to test whether hypercholesterolemia is associated with increased NAD(P)H-dependent vascular O2*- production and whether AT1-receptor blockade may inhibit this oxidase and in parallel improve endothelial dysfunction. Vascular responses were determined by isometric tension studies, and relative rates of vascular O2*- production were determined by use of chemiluminescence with lucigenin, a cypridina luciferin analogue, and electron spin resonance studies. AT1-receptor mRNA was quantified by Northern analysis, and AT1-receptor density was measured by radioligand binding assays. Hypercholesterolemia was associated with impaired endothelium-dependent vasodilation and increased O2*- production in intact vessels. In vessel homogenates, we found a significant activation of NADH-driven O2*- production in both models of hyperlipidemia. Treatment of cholesterol-fed animals with the AT1-receptor antagonist Bay 10-6734 improved endothelial dysfunction, normalized vascular O2*- and NADH-oxidase activity, decreased macrophage infiltration, and reduced early plaque formation. In the setting of hypercholesterolemia, the aortic AT1 receptor mRNA was upregulated to 166+/-11%, accompanied by a comparable increase in AT1-receptor density. Hypercholesterolemia is associated with AT1-receptor upregulation, endothelial dysfunction, and increased NADH-dependent vascular O2*- production. The improvement of endothelial dysfunction, inhibition of the oxidase, and reduction of early plaque formation by an AT1-receptor antagonist suggests a crucial role of angiotensin II-mediated O2*- production in the early stage of atherosclerosis.
ISSN:0009-7322
1524-4539
DOI:10.1161/01.CIR.99.15.2027