Use of fine aggregate matrix for computational modeling of low temperature fracture of asphalt concrete

In this study, a discrete element computational model is applied to simulate the fracture behavior of asphalt mixtures at low temperatures. In this model, coarse aggregates are explicitly represented by rigid spherical particles. The bonds that connect these particles represent the fine aggregate ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials and structures 2018-12, Vol.51 (6), p.1-13, Article 152
Hauptverfasser: Le, Jia-Liang, Hendrickson, Rebecca, Marasteanu, Mihai O., Turos, Mugurel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a discrete element computational model is applied to simulate the fracture behavior of asphalt mixtures at low temperatures. In this model, coarse aggregates are explicitly represented by rigid spherical particles. The bonds that connect these particles represent the fine aggregate matrix (FAM), which is defined as the combination of asphalt binder and fine aggregates. The bending beam rheometer (BBR) tests are performed to determine the strength and Young’s modulus of FAM at low temperatures. The model is then used to simulate the semi-circular bend (SCB) tests on the mixtures. The model is verified by a series of BBR and SCB tests on both conventional and graphite nano-platelet modified asphalt materials. The comparison between the experimental and simulated results indicates that the peak load capacity of the SCB specimens is primarily governed by the tensile strength of the FAM. However, in order to capture the entire load–displacement curve of the SCB specimens, one needs to employ a softening constitutive model of the FAM, which requires the information on its fracture energy. Several experimental methods for measuring the fracture energy of FAM are discussed for future prediction of the complete load–displacement response of asphalt mixtures at low temperatures.
ISSN:1359-5997
1871-6873
DOI:10.1617/s11527-018-1277-x