Deep Convolutional Neural Network for Structural Dynamic Response Estimation and System Identification

AbstractThis study presents a deep convolutional neural network (CNN)-based approach to estimate the dynamic response of a linear single-degree-of-freedom (SDOF) system, a nonlinear SDOF system, and a full-scale 3-story multidegree of freedom (MDOF) steel frame. In the MDOF system, roof acceleration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mechanics 2019-01, Vol.145 (1)
Hauptverfasser: Wu, Rih-Teng, Jahanshahi, Mohammad R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AbstractThis study presents a deep convolutional neural network (CNN)-based approach to estimate the dynamic response of a linear single-degree-of-freedom (SDOF) system, a nonlinear SDOF system, and a full-scale 3-story multidegree of freedom (MDOF) steel frame. In the MDOF system, roof acceleration is estimated through the input ground motion. Various cases of noise-contaminated signals are considered in this study, and the conventional multilayer perceptron (MLP) algorithm serves as a reference for the proposed CNN approach. According to the results from numerical simulations and experimental data, the proposed CNN approach is able to predict the structural responses accurately, and it is more robust against noisy data compared with the MLP algorithm. Moreover, the physical interpretation of CNN model is discussed in the context of structural dynamics. It is demonstrated that in some special cases, the convolution kernel has the capability of approximating the numerical integration operator, and the convolution layers attempt to extract the dominant frequency signature observed in the ideal target signal while eliminating irrelevant information during the training process.
ISSN:0733-9399
1943-7889
DOI:10.1061/(ASCE)EM.1943-7889.0001556