Relative Difference Sets and Hadamard Matrices from Perfect Quaternionic Arrays
Let G = C n 1 × ⋯ × C n m be an abelian group of order n = n 1 ⋯ n m , where each C n t is cyclic of order n t . We present a correspondence between the (4 n , 2, 4 n , 2 n )-relative difference sets in G × Q 8 relative to the centre Z ( Q 8 ) and the perfect arrays of size n 1 × ⋯ × n m over the qu...
Gespeichert in:
Veröffentlicht in: | Mathematics in computer science 2018-12, Vol.12 (4), p.397-406 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
=
C
n
1
×
⋯
×
C
n
m
be an abelian group of order
n
=
n
1
⋯
n
m
, where each
C
n
t
is cyclic of order
n
t
. We present a correspondence between the (4
n
, 2, 4
n
, 2
n
)-relative difference sets in
G
×
Q
8
relative to the centre
Z
(
Q
8
)
and the perfect arrays of size
n
1
×
⋯
×
n
m
over the quaternionic alphabet
Q
8
∪
q
Q
8
, where
q
=
(
1
+
i
+
j
+
k
)
/
2
. In view of this connection, for
m
=
2
we introduce new families of relative difference sets in
G
×
Q
8
, as well as new families of Williamson and Ito Hadamard matrices with
G
-invariant components. |
---|---|
ISSN: | 1661-8270 1661-8289 |
DOI: | 10.1007/s11786-018-0376-y |