Computing the nucleon charge and axial radii directly at Q2=0 in lattice QCD

We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice directly at Q2=0. This is based on the Rome method for computing momentum derivatives of quark propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-02, Vol.97 (3)
Hauptverfasser: Hasan, Nesreen, Green, Jeremy, Meinel, Stefan, Engelhardt, Michael, Krieg, Stefan, Negele, John, Pochinsky, Andrew, Syritsyn, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice directly at Q2=0. This is based on the Rome method for computing momentum derivatives of quark propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius as well as the isovector induced pseudoscalar form factor at Q2=0 and the axial radius. For comparison, we also determine these quantities with the traditional approach of computing the corresponding form factors, i.e. GEv(Q2) and GMv(Q2) for the case of the vector current and GPv(Q2) and GAv(Q2) for the axial current, at multiple Q2 values followed by z-expansion fits. We perform our calculations at the physical pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. The derivative method produces results consistent with those from the traditional approach but with larger statistical uncertainties especially for the isovector charge and axial radii.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.97.034504