Noncommutative Dirac quantization condition using the Seiberg-Witten map

The Dirac quantization condition (DQC) for magnetic monopoles in noncommutative space-time is analyzed. For this a noncommutative generalization of the method introduced by Wu and Yang is considered; the effects of noncommutativity are analyzed using the Seiberg-Witten map and the corresponding defo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2016-11, Vol.94 (10), Article 105024
Hauptverfasser: Maceda, Marco, Martínez-Carbajal, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Dirac quantization condition (DQC) for magnetic monopoles in noncommutative space-time is analyzed. For this a noncommutative generalization of the method introduced by Wu and Yang is considered; the effects of noncommutativity are analyzed using the Seiberg-Witten map and the corresponding deformed Maxwell’s equations are discussed. By using a perturbation expansion in the noncommutativity parameter θ, we show first that the DQC remains unmodified up to the first and second order. This result is then generalized to all orders in the expansion parameter for a class of noncommutative electric currents induced by the Seiberg-Witten map; these currents reduce to the Dirac delta function in the commutative limit.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.94.105024