Fractality of wave functions on a Cayley tree: Difference between tree and locally treelike graph without boundary

We investigate analytically and numerically eigenfunction statistics in a disordered system on a finite Bethe lattice (Cayley tree). We show that the wave-function amplitude at the root of a tree is distributed fractally in a large part of the delocalized phase. The fractal exponents are expressed i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-11, Vol.94 (18), Article 184203
Hauptverfasser: Tikhonov, K. S., Mirlin, A. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate analytically and numerically eigenfunction statistics in a disordered system on a finite Bethe lattice (Cayley tree). We show that the wave-function amplitude at the root of a tree is distributed fractally in a large part of the delocalized phase. The fractal exponents are expressed in terms of the decay rate and the velocity in a problem of propagation of a front between unstable and stable phases. We demonstrate a crucial difference between a loopless Cayley tree and a locally treelike structure without a boundary (random regular graph) where extended wave functions are ergodic.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.94.184203