Extension of the modified effective medium approach to nanocomposites with anisotropic thermal conductivities
An extended modification of the effective medium approach (emEMA) has been developed for the thermal conductivity of anisotropic nanocomposites. This is based on extending approaches developed to treat an anisotropic particle insert and host matrix in electromagnetism of composites to anisotropic th...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-09, Vol.98 (9), p.094201, Article 094201 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An extended modification of the effective medium approach (emEMA) has been developed for the thermal conductivity of anisotropic nanocomposites. This is based on extending approaches developed to treat an anisotropic particle insert and host matrix in electromagnetism of composites to anisotropic thermal interface resistance, with the inclusion of insert size and interface boundary density effects. The method has been applied to the case of spherical inclusions of the 2H dichalcodenide WS2 within a matrix of 2H MoS2, with input bulk thermal conductivities calculated using our recently developed semi-ab initio method. We find that the overall effects of anisotropy are strongest for small particles, but that as particle size increases, the surface anisotropy effects become more apparent. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.98.094201 |