Biomechanical strain induces class A scavenger receptor expression in human monocyte/macrophages and THP-1 cells: A potential mechanism of increased

BACKGROUND: Although hypertension is an important risk factor for the development of atherosclerosis, the mechanisms for this interaction are incompletely described. Previous studies have suggested that biomechanical strain regulates macrophage phenotype. We tested the hypothesis that biomechanical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2001-07, Vol.104 (1), p.109
Hauptverfasser: Sakamoto, Hironosuke, Aikawa, Masanori, Hill, Christopher C, Weiss, Daiana
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND: Although hypertension is an important risk factor for the development of atherosclerosis, the mechanisms for this interaction are incompletely described. Previous studies have suggested that biomechanical strain regulates macrophage phenotype. We tested the hypothesis that biomechanical strain can induce expression of the class A scavenger receptor (SRA), an important lipoprotein receptor in atherogenesis. METHODS AND RESULTS: Human monocyte/macrophages or THP-1 cells were cultured in a device that imposes uniform biaxial cyclic 1-Hz strains of 0%, 1%, 2%, or 3%, and SRA expression was analyzed. Mechanical strains induced SRA mRNA (3.5+/-0.6-fold at 3% strain for 48 hours, P
ISSN:0009-7322
1524-4539