Involvement of cardiotrophin-1 in cardiac myocyte-nonmyocyte interactions during hypertrophy of rat cardiac myocytes in vitro

The mechanism responsible for cardiac hypertrophy is currently conceptualized as having 2 components, mediated by cardiac myocytes and nonmyocytes, respectively. The interaction between myocytes and nonmyocytes via growth factors and/or cytokines plays an important role in the development of cardiac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 1999-09, Vol.100 (10), p.1116-1124
Hauptverfasser: KUWAHARA, K, SAITO, Y, NAKAGAWA, O, MASUDA, I, NAKAO, K, HARADA, M, ISHIKAWA, M, OGAWA, E, MIYAMOTO, Y, HAMANAKA, I, KAMITANI, S, KAJIYAMA, N, TAKAHASHI, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanism responsible for cardiac hypertrophy is currently conceptualized as having 2 components, mediated by cardiac myocytes and nonmyocytes, respectively. The interaction between myocytes and nonmyocytes via growth factors and/or cytokines plays an important role in the development of cardiac hypertrophy. We found that cardiac myocytes showed hypertrophic changes when cocultured with cardiac nonmyocytes. Cardiotrophin-1 (CT-1), a new member of the interleukin-6 family of cytokines, was identified by its ability to induce hypertrophic response in cardiac myocytes. In this study, we used the in vitro coculture system to examine how CT-1 is involved in the interaction between cardiac myocytes and nonmyocytes during the hypertrophy process. RNase protection assay revealed that CT-1 mRNA levels were 3. 5 times higher in cultured cardiac nonmyocytes than in cultured cardiac myocytes. We developed anti-CT-1 antibodies and found that they significantly inhibited the increased atrial and brain natriuretic peptide secretion and protein synthesis characteristic of hypertrophic changes of myocytes in the coculture. In addition, non-myocyte-conditioned medium rapidly elicited tyrosine phosphorylation of STAT3 and induced an increase in natriuretic peptide secretion and protein synthesis in cultured cardiac myocytes; these effects were partially suppressed by anti-CT-1 antibodies. Finally, the hypertrophic effects of CT-1 and endothelin-1, which we had previously implicated in the hypertrophic activity in the coculture, were additive in cardiac myocytes. These results show that CT-1 secreted from cardiac nonmyocytes is significantly involved in the hypertrophic changes of cardiac myocytes in the coculture and suggest that CT-1 is an important local regulator in the process of cardiac hypertrophy.
ISSN:0009-7322
1524-4539
DOI:10.1161/01.cir.100.10.1116