Difference between compositional and grain size effect on the dielectric nonlinearity of Mn and V-doped BaTiO3 multilayer ceramic capacitors
The difference between compositional and grain size effect on the dielectric nonlinearity was contrasted in Mn and V-doped BaTiO3 multilayer ceramic capacitors utilizing the first order reversal curve (FORC) distribution based on the Preisach model. The high field dielectric constants can be increas...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2014-06, Vol.115 (24) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The difference between compositional and grain size effect on the dielectric nonlinearity was contrasted in Mn and V-doped BaTiO3 multilayer ceramic capacitors utilizing the first order reversal curve (FORC) distribution based on the Preisach model. The high field dielectric constants can be increased either by the adjustment of additive composition, that is, Ba concentration maintaining the same grain size, or by increasing its size. The former compositional effect caused an enhanced dielectric constant in both low and high field region, which can be associated with the increase in the saturation polarization, the reversible and the irreversible FORC distributions near zero bias. The latter grain growth effect, on the other hand, resulted in a decrease of the dielectric constants in the low field but a steep ac field dependence of them, which can be correlated with a decrease of the reversible FORC distribution and a significant increase of the irreversible FORC distribution near origin. These results show that the compositional effect is caused by the increase of the magnitude of the spontaneous polarization and the domain wall density, whereas the grain size effect is caused by the increase in the size of the domain and its wall, which increases the probability of domain pinning by weakly pinning centers but enables its long range motion beyond the threshold field. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4885155 |