Integrability properties of the dispersionless Kadomtsev-Petviashvili hierarchy
In the paper, we investigate integrability characteristics for the dispersionless Kadomtsev-Petviashvili hierarchy. These characteristics include symmetries, Hamiltonian structures, and conserved quantities. We give a Lax triad to construct a master symmetry and a hierarchy of non-isospectral disper...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2014-08, Vol.55 (8), p.1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Journal of mathematical physics |
container_volume | 55 |
creator | Fu, Wei Ilangovane, R. Tamizhmani, K. M. Zhang, Da-jun |
description | In the paper, we investigate integrability characteristics for the dispersionless Kadomtsev-Petviashvili hierarchy. These characteristics include symmetries, Hamiltonian structures, and conserved quantities. We give a Lax triad to construct a master symmetry and a hierarchy of non-isospectral dispersionless Kadomtsev-Petviashvili flows. These non-isospectral flows, together with the known isospectral dispersionless Kadomtsev-Petviashvili flows, form a Lie algebra, which is used to derive two sets of symmetries for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy. By means of the master symmetry, symmetries, Noether operator, and conserved covariants, Hamiltonian structures are constructed for both isospectral and non-isospectral dispersionless Kadomtsev-Petviashvili hierarchies. Finally, two sets of conserved quantities and their Lie algebra are derived for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy. |
doi_str_mv | 10.1063/1.4890480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126579096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3424222861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-ba56aff0b045d48ca7f3bd26a7aa6a397c3f3fa407bfcd59accaaaf46aec12b63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_8GCJw9bJx-bTY5StBYL9aDnMJtN3JS2W5O00H_vSnv2NDA87zvDQ8g9hQkFyZ_oRCgNQsEFGVFQuqxlpS7JCICxkgmlrslNSisASpUQI7Kcb7P7jtiEdcjHYhf7nYs5uFT0vsidK9qQhk0K_XbtUirese03OblD-eHyIWDqDkOy6IKLGG13vCVXHtfJ3Z3nmHy9vnxO38rFcjafPi9KyxnkssFKovfQgKhaoSzWnjctk1gjSuS6ttxzjwLqxtu20mgtInoh0VnKGsnH5OHUO3z8s3cpm1W_j9vhpGGUyarWoP-laCWB10wzPVCPJ8rGPqXovNnFsMF4NBTMn1VDzdkq_wWuJGtX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560372929</pqid></control><display><type>article</type><title>Integrability properties of the dispersionless Kadomtsev-Petviashvili hierarchy</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Fu, Wei ; Ilangovane, R. ; Tamizhmani, K. M. ; Zhang, Da-jun</creator><creatorcontrib>Fu, Wei ; Ilangovane, R. ; Tamizhmani, K. M. ; Zhang, Da-jun</creatorcontrib><description>In the paper, we investigate integrability characteristics for the dispersionless Kadomtsev-Petviashvili hierarchy. These characteristics include symmetries, Hamiltonian structures, and conserved quantities. We give a Lax triad to construct a master symmetry and a hierarchy of non-isospectral dispersionless Kadomtsev-Petviashvili flows. These non-isospectral flows, together with the known isospectral dispersionless Kadomtsev-Petviashvili flows, form a Lie algebra, which is used to derive two sets of symmetries for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy. By means of the master symmetry, symmetries, Noether operator, and conserved covariants, Hamiltonian structures are constructed for both isospectral and non-isospectral dispersionless Kadomtsev-Petviashvili hierarchies. Finally, two sets of conserved quantities and their Lie algebra are derived for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4890480</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Construction ; Dispersion ; Hierarchies ; Lie groups ; Mathematics ; Physics ; Quantum theory ; Symmetry</subject><ispartof>Journal of mathematical physics, 2014-08, Vol.55 (8), p.1</ispartof><rights>Copyright American Institute of Physics Aug 2014</rights><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-ba56aff0b045d48ca7f3bd26a7aa6a397c3f3fa407bfcd59accaaaf46aec12b63</citedby><cites>FETCH-LOGICAL-c320t-ba56aff0b045d48ca7f3bd26a7aa6a397c3f3fa407bfcd59accaaaf46aec12b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fu, Wei</creatorcontrib><creatorcontrib>Ilangovane, R.</creatorcontrib><creatorcontrib>Tamizhmani, K. M.</creatorcontrib><creatorcontrib>Zhang, Da-jun</creatorcontrib><title>Integrability properties of the dispersionless Kadomtsev-Petviashvili hierarchy</title><title>Journal of mathematical physics</title><description>In the paper, we investigate integrability characteristics for the dispersionless Kadomtsev-Petviashvili hierarchy. These characteristics include symmetries, Hamiltonian structures, and conserved quantities. We give a Lax triad to construct a master symmetry and a hierarchy of non-isospectral dispersionless Kadomtsev-Petviashvili flows. These non-isospectral flows, together with the known isospectral dispersionless Kadomtsev-Petviashvili flows, form a Lie algebra, which is used to derive two sets of symmetries for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy. By means of the master symmetry, symmetries, Noether operator, and conserved covariants, Hamiltonian structures are constructed for both isospectral and non-isospectral dispersionless Kadomtsev-Petviashvili hierarchies. Finally, two sets of conserved quantities and their Lie algebra are derived for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy.</description><subject>Algebra</subject><subject>Construction</subject><subject>Dispersion</subject><subject>Hierarchies</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Quantum theory</subject><subject>Symmetry</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_8GCJw9bJx-bTY5StBYL9aDnMJtN3JS2W5O00H_vSnv2NDA87zvDQ8g9hQkFyZ_oRCgNQsEFGVFQuqxlpS7JCICxkgmlrslNSisASpUQI7Kcb7P7jtiEdcjHYhf7nYs5uFT0vsidK9qQhk0K_XbtUirese03OblD-eHyIWDqDkOy6IKLGG13vCVXHtfJ3Z3nmHy9vnxO38rFcjafPi9KyxnkssFKovfQgKhaoSzWnjctk1gjSuS6ttxzjwLqxtu20mgtInoh0VnKGsnH5OHUO3z8s3cpm1W_j9vhpGGUyarWoP-laCWB10wzPVCPJ8rGPqXovNnFsMF4NBTMn1VDzdkq_wWuJGtX</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Fu, Wei</creator><creator>Ilangovane, R.</creator><creator>Tamizhmani, K. M.</creator><creator>Zhang, Da-jun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Integrability properties of the dispersionless Kadomtsev-Petviashvili hierarchy</title><author>Fu, Wei ; Ilangovane, R. ; Tamizhmani, K. M. ; Zhang, Da-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-ba56aff0b045d48ca7f3bd26a7aa6a397c3f3fa407bfcd59accaaaf46aec12b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Construction</topic><topic>Dispersion</topic><topic>Hierarchies</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Quantum theory</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Wei</creatorcontrib><creatorcontrib>Ilangovane, R.</creatorcontrib><creatorcontrib>Tamizhmani, K. M.</creatorcontrib><creatorcontrib>Zhang, Da-jun</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Wei</au><au>Ilangovane, R.</au><au>Tamizhmani, K. M.</au><au>Zhang, Da-jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrability properties of the dispersionless Kadomtsev-Petviashvili hierarchy</atitle><jtitle>Journal of mathematical physics</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>55</volume><issue>8</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><abstract>In the paper, we investigate integrability characteristics for the dispersionless Kadomtsev-Petviashvili hierarchy. These characteristics include symmetries, Hamiltonian structures, and conserved quantities. We give a Lax triad to construct a master symmetry and a hierarchy of non-isospectral dispersionless Kadomtsev-Petviashvili flows. These non-isospectral flows, together with the known isospectral dispersionless Kadomtsev-Petviashvili flows, form a Lie algebra, which is used to derive two sets of symmetries for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy. By means of the master symmetry, symmetries, Noether operator, and conserved covariants, Hamiltonian structures are constructed for both isospectral and non-isospectral dispersionless Kadomtsev-Petviashvili hierarchies. Finally, two sets of conserved quantities and their Lie algebra are derived for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4890480</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2014-08, Vol.55 (8), p.1 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2126579096 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algebra Construction Dispersion Hierarchies Lie groups Mathematics Physics Quantum theory Symmetry |
title | Integrability properties of the dispersionless Kadomtsev-Petviashvili hierarchy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrability%20properties%20of%20the%20dispersionless%20Kadomtsev-Petviashvili%20hierarchy&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Fu,%20Wei&rft.date=2014-08-01&rft.volume=55&rft.issue=8&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft_id=info:doi/10.1063/1.4890480&rft_dat=%3Cproquest_cross%3E3424222861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560372929&rft_id=info:pmid/&rfr_iscdi=true |