Integrability properties of the dispersionless Kadomtsev-Petviashvili hierarchy
In the paper, we investigate integrability characteristics for the dispersionless Kadomtsev-Petviashvili hierarchy. These characteristics include symmetries, Hamiltonian structures, and conserved quantities. We give a Lax triad to construct a master symmetry and a hierarchy of non-isospectral disper...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2014-08, Vol.55 (8), p.1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper, we investigate integrability characteristics for the dispersionless Kadomtsev-Petviashvili hierarchy. These characteristics include symmetries, Hamiltonian structures, and conserved quantities. We give a Lax triad to construct a master symmetry and a hierarchy of non-isospectral dispersionless Kadomtsev-Petviashvili flows. These non-isospectral flows, together with the known isospectral dispersionless Kadomtsev-Petviashvili flows, form a Lie algebra, which is used to derive two sets of symmetries for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy. By means of the master symmetry, symmetries, Noether operator, and conserved covariants, Hamiltonian structures are constructed for both isospectral and non-isospectral dispersionless Kadomtsev-Petviashvili hierarchies. Finally, two sets of conserved quantities and their Lie algebra are derived for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4890480 |