Integrability properties of the dispersionless Kadomtsev-Petviashvili hierarchy

In the paper, we investigate integrability characteristics for the dispersionless Kadomtsev-Petviashvili hierarchy. These characteristics include symmetries, Hamiltonian structures, and conserved quantities. We give a Lax triad to construct a master symmetry and a hierarchy of non-isospectral disper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2014-08, Vol.55 (8), p.1
Hauptverfasser: Fu, Wei, Ilangovane, R., Tamizhmani, K. M., Zhang, Da-jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the paper, we investigate integrability characteristics for the dispersionless Kadomtsev-Petviashvili hierarchy. These characteristics include symmetries, Hamiltonian structures, and conserved quantities. We give a Lax triad to construct a master symmetry and a hierarchy of non-isospectral dispersionless Kadomtsev-Petviashvili flows. These non-isospectral flows, together with the known isospectral dispersionless Kadomtsev-Petviashvili flows, form a Lie algebra, which is used to derive two sets of symmetries for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy. By means of the master symmetry, symmetries, Noether operator, and conserved covariants, Hamiltonian structures are constructed for both isospectral and non-isospectral dispersionless Kadomtsev-Petviashvili hierarchies. Finally, two sets of conserved quantities and their Lie algebra are derived for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4890480