Hedgehog ZnO/Ag heterostructure: an environment-friendly rare earth free potential material for cold-white light emission with high quantum yield

Solid-state white light emission from environment-friendly, highly stable hedgehog ZnO/Ag heterostructure has been observed for first time from a combined effect of tunability of emission centers and charge transfer. The heterostructure has been synthesized via a facile low-temperature hydrothermal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2018-11, Vol.124 (11), p.1-9, Article 782
Hauptverfasser: Bhattacharyya, Puja, Bhattacharjee, Swarupananda, Bar, Manoranjan, Ghorai, Uttam Kumar, Pal, Mrinal, Baitalik, Sujoy, Ghosh, Chandan Kr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solid-state white light emission from environment-friendly, highly stable hedgehog ZnO/Ag heterostructure has been observed for first time from a combined effect of tunability of emission centers and charge transfer. The heterostructure has been synthesized via a facile low-temperature hydrothermal route and characterized using X-ray diffractometer, scanning electron microscope and transmission electron microscope. The interaction between ZnO and Ag can be confirmed from the appearance of few new multi-phonon Raman peaks. Steady-state photoluminescence spectrum reveals multiple emissions (413, 453, 546, 605 and 667 nm) from virgin hedgehog ZnO at an excitation wavelength of 325 nm. Tuneability of radiative and non-radiative emission of ZnO which is the primary mechanism for white light emission (CIE coordinate: 0.35, 0.32) has been briefly investigated by time-correlated single-photon spectroscopy. Biocompatible as well cost-effectivity depicts that the as-prepared heterostructure would be a promising solid-state white light-emitting phosphor material for long-term use. Graphical abstract
ISSN:0947-8396
1432-0630
DOI:10.1007/s00339-018-2174-4