Probing the coupled adhesion and deformation characteristics of suspension cells

By combining optical trapping with fluorescence imaging, the adhesion and deformation characteristics of suspension cells were probed on single cell level. We found that, after 24 h of co-culturing, stable attachment between non-adherent K562 cells and polystyrene beads coated with fibronectin, coll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2014-08, Vol.105 (7)
Hauptverfasser: Hui, T. H., Zhu, Q., Zhou, Z. L., Qian, J., Lin, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By combining optical trapping with fluorescence imaging, the adhesion and deformation characteristics of suspension cells were probed on single cell level. We found that, after 24 h of co-culturing, stable attachment between non-adherent K562 cells and polystyrene beads coated with fibronectin, collagen I, or G-actin can all be formed with an adhesion energy density in the range of 1–3×10−2 mJ/m2, which is about one order of magnitude lower than the reported values for several adherent cells. In addition, it was observed that the formation of a stronger adhesion is accompanied with the appearance of a denser actin cell cortex, especially in the region close to the cell-bead interface, resulting in a significant increase in the apparent modulus of the cell. Findings here could be important for our understanding of why the aggregation of circulating cells, like that in leukostasis, takes place in vivo as well as how such clusters of non-adherent cells behave. The method proposed can also be useful in investigating adhesion and related phenomena for other cell types in the future.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4893734