Extendability of Kirchhoff elastic rods in complete Riemannian manifolds
The Kirchhoff elastic rod is a classical mathematical model of equilibrium configurations of thin elastic rods, and is defined to be a solution of the Euler-Lagrange equations associated to the energy with the effect of bending and twisting. We consider the initial-value problem for the Euler-Lagran...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2014-08, Vol.55 (8), p.1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Kirchhoff elastic rod is a classical mathematical model of equilibrium configurations of thin elastic rods, and is defined to be a solution of the Euler-Lagrange equations associated to the energy with the effect of bending and twisting. We consider the initial-value problem for the Euler-Lagrange equations in a Riemannian manifold. In a previous paper, the author proved the existence and uniqueness of global solutions of the initial-value problem in the case where the ambient space is a space form. In the present paper, we extend this result to the case where the ambient space is a general complete Riemannian manifold. This implies that an arbitrary Kirchhoff elastic rod of finite length in a complete Riemannian manifold extends to that of infinite length. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4893356 |