Extendability of Kirchhoff elastic rods in complete Riemannian manifolds

The Kirchhoff elastic rod is a classical mathematical model of equilibrium configurations of thin elastic rods, and is defined to be a solution of the Euler-Lagrange equations associated to the energy with the effect of bending and twisting. We consider the initial-value problem for the Euler-Lagran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2014-08, Vol.55 (8), p.1
1. Verfasser: Kawakubo, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Kirchhoff elastic rod is a classical mathematical model of equilibrium configurations of thin elastic rods, and is defined to be a solution of the Euler-Lagrange equations associated to the energy with the effect of bending and twisting. We consider the initial-value problem for the Euler-Lagrange equations in a Riemannian manifold. In a previous paper, the author proved the existence and uniqueness of global solutions of the initial-value problem in the case where the ambient space is a space form. In the present paper, we extend this result to the case where the ambient space is a general complete Riemannian manifold. This implies that an arbitrary Kirchhoff elastic rod of finite length in a complete Riemannian manifold extends to that of infinite length.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4893356