Neutron magnetic polarizability with Landau mode operators

The application of a uniform background magnetic field makes standard quark operators utilizing gauge-covariant Gaussian smearing inefficient at isolating the ground state nucleon at nontrivial field strengths. In the absence of QCD interactions, Landau modes govern the quark energy levels. There is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-08, Vol.98 (3), Article 034504
Hauptverfasser: Bignell, Ryan, Hall, Jonathan, Kamleh, Waseem, Leinweber, Derek, Burkardt, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of a uniform background magnetic field makes standard quark operators utilizing gauge-covariant Gaussian smearing inefficient at isolating the ground state nucleon at nontrivial field strengths. In the absence of QCD interactions, Landau modes govern the quark energy levels. There is evidence that residual Landau mode effects remain when the strong interaction is turned on. Here, we introduce novel quark operators constructed from the two-dimensional U(1) Laplacian eigenmodes that describe the Landau levels of a charged particle on a periodic finite lattice. These eigenmode-projected quark operators provide enhanced precision for calculating nucleon energy shifts in a magnetic field. Using asymmetric source and sink operators, we are able to encapsulate the predominant effects of both the QCD and QED interactions in the interpolating fields for the neutron. The neutron magnetic polarizability is calculated using these techniques on the 323×64 dynamical QCD lattices provided by the PACS-CS Collaboration. In conjunction with a chiral effective-field theory analysis, we obtain a neutron magnetic polarizability of βn=2.05(25)(19)×10−4  fm3, where the numbers in parentheses describe statistical and systematic uncertainties.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.98.034504