Casimir energy of Sierpinski triangles

Using scaling arguments and the property of self-similarity we derive the Casimir energies of Sierpinski triangles and Sierpinski rectangles. The Hausdorff-Besicovitch dimension (fractal dimension) of the Casimir energy is introduced and the Berry-Weyl conjecture is discussed for these geometries. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2017-11, Vol.96 (10), Article 105010
Hauptverfasser: Shajesh, K. V., Parashar, Prachi, Cavero-Peláez, Inés, Kocik, Jerzy, Brevik, Iver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using scaling arguments and the property of self-similarity we derive the Casimir energies of Sierpinski triangles and Sierpinski rectangles. The Hausdorff-Besicovitch dimension (fractal dimension) of the Casimir energy is introduced and the Berry-Weyl conjecture is discussed for these geometries. We propose that for a class of fractals, comprising compartmentalized cavities, it is possible to establish a finite value to the Casimir energy even while the Casimir energy of the individual cavities consists of divergent terms.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.96.105010