Casimir energy of Sierpinski triangles
Using scaling arguments and the property of self-similarity we derive the Casimir energies of Sierpinski triangles and Sierpinski rectangles. The Hausdorff-Besicovitch dimension (fractal dimension) of the Casimir energy is introduced and the Berry-Weyl conjecture is discussed for these geometries. W...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2017-11, Vol.96 (10), Article 105010 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using scaling arguments and the property of self-similarity we derive the Casimir energies of Sierpinski triangles and Sierpinski rectangles. The Hausdorff-Besicovitch dimension (fractal dimension) of the Casimir energy is introduced and the Berry-Weyl conjecture is discussed for these geometries. We propose that for a class of fractals, comprising compartmentalized cavities, it is possible to establish a finite value to the Casimir energy even while the Casimir energy of the individual cavities consists of divergent terms. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.96.105010 |