Stress and field contactless sensor based on the scattering of electromagnetic waves by a single ferromagnetic microwire
In this paper, we report an experimental study on the microwave modulated scattering intensity for a single Fe2.25Co72.75Si10B15 amorphous metallic microwire. The modulation is driven by applying a bias magnetic field that tunes the magnetic permeability of the ferromagnetic microwire. Furthermore,...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-09, Vol.105 (9) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we report an experimental study on the microwave modulated scattering intensity for a single Fe2.25Co72.75Si10B15 amorphous metallic microwire. The modulation is driven by applying a bias magnetic field that tunes the magnetic permeability of the ferromagnetic microwire. Furthermore, by using a magnetostrictive microwire, we also demonstrate that the microwave scattering is sensitive to mechanical stresses. In fact, we present a wireless microwave controlled stress sensor, suitable for biological applications, as a possible use of this effect. In addition, a first order theoretical approximation accounts for the observed influence of the magnetic permeability on the scattering coefficients. That model leads to predictions in good agreement with the experimental results. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4894732 |