Nature of the metallization transition in solid hydrogen
We present an accurate study of the static-nucleus electronic energy band gap of solid molecular hydrogen at high pressure. The excitonic and quasiparticle gaps of the C2/c, Pc, Pbcn, and P63/m structures at pressures of 250, 300, and 350 GPa are calculated using the fixed-node diffusion quantum Mon...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2017-01, Vol.95 (3), p.035142, Article 035142 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an accurate study of the static-nucleus electronic energy band gap of solid molecular hydrogen at high pressure. The excitonic and quasiparticle gaps of the C2/c, Pc, Pbcn, and P63/m structures at pressures of 250, 300, and 350 GPa are calculated using the fixed-node diffusion quantum Monte Carlo (DMC) method. The difference between the mean-field and many-body band gaps at the same density is found to be almost independent of system size and can therefore be applied as a scissor correction to the mean-field gap of an infinite system to obtain an estimate of the many-body gap in the thermodynamic limit. By comparing our static-nucleus DMC energy gaps with available experimental results, we demonstrate the important role played by nuclear quantum effects in the electronic structure of solid hydrogen. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.95.035142 |