Bekenstein bounds, Penrose inequalities, and black hole formation

A universal geometric inequality for bodies relating energy, size, angular momentum, and charge is naturally implied by Bekenstein’s entropy bounds. We establish versions of this inequality for axisymmetric bodies satisfying appropriate energy conditions, thus lending credence to the most general fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-06, Vol.97 (12), Article 124026
Hauptverfasser: Jaracz, Jaroslaw S., Khuri, Marcus A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A universal geometric inequality for bodies relating energy, size, angular momentum, and charge is naturally implied by Bekenstein’s entropy bounds. We establish versions of this inequality for axisymmetric bodies satisfying appropriate energy conditions, thus lending credence to the most general form of Bekenstein’s bound. Similar techniques are then used to prove a Penrose-like inequality in which the ADM energy is bounded from below in terms of horizon area, angular momentum, and charge. Lastly, new criteria for the formation of black holes is presented involving concentration of angular momentum, charge, and nonelectromagnetic matter energy.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.97.124026