A novel approach on accelerated ageing towards reliability optimization of high concentration photovoltaic cells

This paper presents a preliminary study upon a novel approach proposed for highly accelerated ageing and reliability optimization of high concentrating photovoltaic (HCPV) cells and assemblies. The intended approach aims to overcome several limitations of some current accelerated ageing tests (AAT)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tsanakas John A, Jaffre Damien, Sicre Mathieu, Elouamari Rachid, Vossier Alexis, de Salins Jean-Edouard, Bechou Laurent, Levrier Bruno, Perona Arnaud, Dollet Alain
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a preliminary study upon a novel approach proposed for highly accelerated ageing and reliability optimization of high concentrating photovoltaic (HCPV) cells and assemblies. The intended approach aims to overcome several limitations of some current accelerated ageing tests (AAT) adopted up today, proposing the use of an alternative experimental set-up for performing faster and more realistic thermal cycles, under real sun, without the involvement of environmental chamber. The study also includes specific characterization techniques, before and after each AAT sequence, which respectively provide the initial and final diagnosis on the condition of the tested sample. The acquired data from these diagnostic/characterization methods are then used as indices to determine both quantitatively and qualitatively the severity of degradation and, thus, the ageing level for each tested HCPV assembly or cell sample. Ultimate goal of such "initial diagnosis - AAT - final diagnosis" sequences is to provide the basis for a future work on the reliability analysis of the main degradation mechanisms and confident prediction of failure propagation in HCPV cells, by means of acceleration factor (AF) and mean-time-to-failure (MTTF) estimations.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4897074