Atomic-dipole-moment induced local surface potential on Si(111)-(7 × 7) surface studied by non-contact scanning nonlinear dielectric microscopy
We have performed the site-specific, quantitative measurement of a local surface potential induced by atomic dipoles on a Si(111)-(7 × 7) surface by non-contact scanning nonlinear dielectric microscopy (NC-SNDM) combined with an atom-tracking technique. The measured potentials were quantitatively co...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-09, Vol.105 (12) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have performed the site-specific, quantitative measurement of a local surface potential induced by atomic dipoles on a Si(111)-(7 × 7) surface by non-contact scanning nonlinear dielectric microscopy (NC-SNDM) combined with an atom-tracking technique. The measured potentials were quantitatively consistent with those estimated by a simultaneous measurement of the tunneling current, which validates a previously proposed hypothetical mechanism that explains the unexpected resemblance between the dipole and time-averaged tunneling current images in NC-SNDM imaging. The results show that an asymmetry arising in the current-voltage characteristics within the tunneling regime is governed by the local surface potential induced by atomic dipoles. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4896323 |