Incorporation of Ge on High K Dielectric Material for Different Fabrication Technologies (HBT, CMOS) and Their Impact on Electrical Characteristics of the Device
The paper is composed of distinct reviews on various fabrication technologies of the CMOS family and the characterization of MOS capacitors. The initial part of the article essentially presents a systemic review on an already conducted work on different fabrication technologies such as Si MOSFET, Si...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2018-01, Vol.2018 (2018), p.1-7 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper is composed of distinct reviews on various fabrication technologies of the CMOS family and the characterization of MOS capacitors. The initial part of the article essentially presents a systemic review on an already conducted work on different fabrication technologies such as Si MOSFET, SiGe HBT, and InP HBT. Device and circuit-level performance for broadband and tuned millimetre-wave applications is discussed in detail relative to the underlying CMOS technologies. The comparison is made for various performance metrics for 180 nm, 130 nm, and 90 nm n-MOSFET devices for SiGe and InP HBTs. In the latter part of the study, a comprehensive review on a previously conducted research on electrical and physical characterization of metal-oxide-semiconductor (MOS) capacitors fabricated on a 2.5 μm epitaxial germanium layer grown on (100) silicon substrate is undertaken. The focus and crux of the study is the influence of germanium surface preparation on MOS electrical characteristics. It is observed that predielectric (HfO) deposition annealing in NH3 ambience results in the performance upgradation in critical and key parameters such as equivalent oxide thickness and the gate leakage current. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2018/2497352 |