Giant increase of critical current density and vortex pinning in Mn doped KxFe2−ySe2 single crystals

We report a comparative study of the critical current density (Jc) and vortex pinning among pure and Mn doped KxFe2−ySe2 single crystals. It is found that the Jc values can be greatly improved by Mn doping and post-quenching treatment when comparing to pristine pure sample. In contrast to pure sampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2014-11, Vol.105 (19)
Hauptverfasser: Li, Mingtao, Chen, La, You, Wen-Long, Ge, Junyi, Zhang, Jincang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a comparative study of the critical current density (Jc) and vortex pinning among pure and Mn doped KxFe2−ySe2 single crystals. It is found that the Jc values can be greatly improved by Mn doping and post-quenching treatment when comparing to pristine pure sample. In contrast to pure samples, an anomalous second magnetization peak (SMP) effect is observed in both 1% and 2% Mn doped samples at T = 3 K for H∥ab but not for H∥c. Referring to Dew-Hughes and Kramer's model, we performed scaling analyses of the vortex pinning force density vs magnetic field in 1% Mn doped and quenched pristine crystals. The results show that the normal point defects are the dominant pinning sources, which probably originate from the variations of intercalated K atoms. We propose that the large nonsuperconducting K-Mn-Se inclusions may contribute to the partial normal surface pinning and give rise to the anomalous SMP effect for H∥ab in Mn doped crystals. These results may facilitate further understanding of the superconductivity and vortex pinning in intercalated iron-selenides superconductors.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4901902