Numerical modeling of current-voltage characteristics to extract transport properties of organic semiconductors

The current vs. voltage (I-V) characteristics of single crystal rubrene Organic Field-Effect Transistors (OFETs) and polycrystalline poly(p-phenylenevinylene) (PPV) films are modeled using the polaron transport theory presented in a previous work [A. F. Basile et al., J. Appl. Phys. 115, 244505 (201...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-11, Vol.116 (19)
Hauptverfasser: Basile, A. F., Fraboni, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current vs. voltage (I-V) characteristics of single crystal rubrene Organic Field-Effect Transistors (OFETs) and polycrystalline poly(p-phenylenevinylene) (PPV) films are modeled using the polaron transport theory presented in a previous work [A. F. Basile et al., J. Appl. Phys. 115, 244505 (2014)]. The model is first applied to rubrene OFETs, where transport is two-dimensional and is confined near the interface between the insulator and the organic semiconductor. By considering the effect of image charges in the insulator and by assuming a constant intrinsic mobility, we reproduce both the positive and the negative temperature dependences of the channel mobilities measured on OFETs having a gate dielectric and an air-gap insulator, respectively. In addition, we adapt this model to the three-dimensional transport in PPV films, characterized by effective mobilities which depend on temperature, charge density, and electric field. We show that the I-V characteristics of these materials can be matched by the numerical solution of the Poisson and drift-diffusion equations assuming a constant intrinsic mobility. The polaron binding energy can account for the thermally activated behavior of the I-V characteristics and for the increase of the effective mobility at high applied voltages. Therefore, this model enables to extract the intrinsic transport parameters of organic semiconductors, independent of the device structure, and of the measurement conditions.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4902143