Optoelectronic properties of ZnO film on silicon after SF6 plasma treatment and milliseconds annealing
Zinc oxide thin film is one of the most promising candidates for the transparent conductive layer in microelectronic and photovoltaic applications, due to its low resistivity and high transmittance in the visible spectral range. In this letter, we present optoelectronic and structural properties of...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-12, Vol.105 (22) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Zinc oxide thin film is one of the most promising candidates for the transparent conductive layer in microelectronic and photovoltaic applications, due to its low resistivity and high transmittance in the visible spectral range. In this letter, we present optoelectronic and structural properties of fluorine doped ZnO films deposited at low temperature on a silicon substrate. The fluorine doping was made by post-deposition SF6 plasma treatment and activation by the millisecond range flash lamp annealing. Both the microstructural and optical investigations confirm the formation of a high-quality, highly doped n-type ZnO layer. The current-voltage characteristics show a heterojunction between n+-ZnO and Si. Moreover, it is shown that the SF6 plasma treatment efficiently passivates the surface state and bulk defects in the ZnO film. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4903074 |