Rate-state friction in microelectromechanical systems interfaces: Experiment and theory
A microscale, multi-asperity frictional test platform has been designed that allows for wide variation of normal load, spring constant, and puller step frequency. Two different monolayer coatings have been applied to the surfaces—tridecafluorotris(dimethylamino)silane (FOTAS, CF3(CF2)5(CH2)2 Si(N(CH...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2014-12, Vol.116 (24) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 116 |
creator | Shroff, Sameer S. Ansari, Naveed Robert Ashurst, W. de Boer, Maarten P. |
description | A microscale, multi-asperity frictional test platform has been designed that allows for wide variation of normal load, spring constant, and puller step frequency. Two different monolayer coatings have been applied to the surfaces—tridecafluorotris(dimethylamino)silane (FOTAS, CF3(CF2)5(CH2)2 Si(N(CH3)2)3) and octadecyltrichlorosilane (OTS, CH3(CH2)17SiCl3). Static friction aging was observed for both coatings. Simulating the platform using a modified rate-state model with discrete actuator steps results in good agreement with experiments over a wide control parameter subspace using system parameters extracted from experiments. Experimental and modeling results indicate that (1) contacts strengthen with rest time, exponentially approaching a maximum value and rejuvenating after inertial events, and (2) velocity strengthening is needed to explain the shorter than expected length of slips after the friction block transitions from a stick state. We suggest that aging occurs because tail groups in the monolayer coatings reconfigure readily upon initial contact with an opposing countersurface. The reconfiguration is limited by the constraint that head groups are covalently bound to the substrate. |
doi_str_mv | 10.1063/1.4904060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126487726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126487726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-1d1721c922f478a16e4cb3ded219d663adffb098edc6e19add7775bc89b0f3603</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsH_0HAk4etM9ltPrxJqR9QEETxuGSTCd3S3a1JCvbfu9JeZi4P7zvzMHaLMEOQ5QPOKgMVSDhjEwRtCjWfwzmbAAgstFHmkl2ltAFA1KWZsO8Pm6lIeZw8xNblduh52_OudXGgLbkch47c2vats1ueDilTl0YiUwzWUXrky98dxbajPnPbe57XNMTDNbsIdpvo5rSn7Ot5-bl4LVbvL2-Lp1XhhBC5QI9KoDNChEppi5Iq15SevEDjpSytD6EBo8k7SWis90qpeeO0aSCUEsopuzvm7uLws6eU682wj_1YWQsUstJKCTlS90dqfCqlSKHejRfbeKgR6n9vNdYnb-Uf8S1gvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126487726</pqid></control><display><type>article</type><title>Rate-state friction in microelectromechanical systems interfaces: Experiment and theory</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shroff, Sameer S. ; Ansari, Naveed ; Robert Ashurst, W. ; de Boer, Maarten P.</creator><creatorcontrib>Shroff, Sameer S. ; Ansari, Naveed ; Robert Ashurst, W. ; de Boer, Maarten P.</creatorcontrib><description>A microscale, multi-asperity frictional test platform has been designed that allows for wide variation of normal load, spring constant, and puller step frequency. Two different monolayer coatings have been applied to the surfaces—tridecafluorotris(dimethylamino)silane (FOTAS, CF3(CF2)5(CH2)2 Si(N(CH3)2)3) and octadecyltrichlorosilane (OTS, CH3(CH2)17SiCl3). Static friction aging was observed for both coatings. Simulating the platform using a modified rate-state model with discrete actuator steps results in good agreement with experiments over a wide control parameter subspace using system parameters extracted from experiments. Experimental and modeling results indicate that (1) contacts strengthen with rest time, exponentially approaching a maximum value and rejuvenating after inertial events, and (2) velocity strengthening is needed to explain the shorter than expected length of slips after the friction block transitions from a stick state. We suggest that aging occurs because tail groups in the monolayer coatings reconfigure readily upon initial contact with an opposing countersurface. The reconfiguration is limited by the constraint that head groups are covalently bound to the substrate.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4904060</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Asperity ; Coatings ; Computer simulation ; Friction ; Mathematical models ; Microelectromechanical systems ; Monolayers ; Parameters ; Reconfiguration ; Spring constant ; Static friction ; Substrates</subject><ispartof>Journal of applied physics, 2014-12, Vol.116 (24)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-1d1721c922f478a16e4cb3ded219d663adffb098edc6e19add7775bc89b0f3603</citedby><cites>FETCH-LOGICAL-c222t-1d1721c922f478a16e4cb3ded219d663adffb098edc6e19add7775bc89b0f3603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shroff, Sameer S.</creatorcontrib><creatorcontrib>Ansari, Naveed</creatorcontrib><creatorcontrib>Robert Ashurst, W.</creatorcontrib><creatorcontrib>de Boer, Maarten P.</creatorcontrib><title>Rate-state friction in microelectromechanical systems interfaces: Experiment and theory</title><title>Journal of applied physics</title><description>A microscale, multi-asperity frictional test platform has been designed that allows for wide variation of normal load, spring constant, and puller step frequency. Two different monolayer coatings have been applied to the surfaces—tridecafluorotris(dimethylamino)silane (FOTAS, CF3(CF2)5(CH2)2 Si(N(CH3)2)3) and octadecyltrichlorosilane (OTS, CH3(CH2)17SiCl3). Static friction aging was observed for both coatings. Simulating the platform using a modified rate-state model with discrete actuator steps results in good agreement with experiments over a wide control parameter subspace using system parameters extracted from experiments. Experimental and modeling results indicate that (1) contacts strengthen with rest time, exponentially approaching a maximum value and rejuvenating after inertial events, and (2) velocity strengthening is needed to explain the shorter than expected length of slips after the friction block transitions from a stick state. We suggest that aging occurs because tail groups in the monolayer coatings reconfigure readily upon initial contact with an opposing countersurface. The reconfiguration is limited by the constraint that head groups are covalently bound to the substrate.</description><subject>Applied physics</subject><subject>Asperity</subject><subject>Coatings</subject><subject>Computer simulation</subject><subject>Friction</subject><subject>Mathematical models</subject><subject>Microelectromechanical systems</subject><subject>Monolayers</subject><subject>Parameters</subject><subject>Reconfiguration</subject><subject>Spring constant</subject><subject>Static friction</subject><subject>Substrates</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsH_0HAk4etM9ltPrxJqR9QEETxuGSTCd3S3a1JCvbfu9JeZi4P7zvzMHaLMEOQ5QPOKgMVSDhjEwRtCjWfwzmbAAgstFHmkl2ltAFA1KWZsO8Pm6lIeZw8xNblduh52_OudXGgLbkch47c2vats1ueDilTl0YiUwzWUXrky98dxbajPnPbe57XNMTDNbsIdpvo5rSn7Ot5-bl4LVbvL2-Lp1XhhBC5QI9KoDNChEppi5Iq15SevEDjpSytD6EBo8k7SWis90qpeeO0aSCUEsopuzvm7uLws6eU682wj_1YWQsUstJKCTlS90dqfCqlSKHejRfbeKgR6n9vNdYnb-Uf8S1gvw</recordid><startdate>20141228</startdate><enddate>20141228</enddate><creator>Shroff, Sameer S.</creator><creator>Ansari, Naveed</creator><creator>Robert Ashurst, W.</creator><creator>de Boer, Maarten P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141228</creationdate><title>Rate-state friction in microelectromechanical systems interfaces: Experiment and theory</title><author>Shroff, Sameer S. ; Ansari, Naveed ; Robert Ashurst, W. ; de Boer, Maarten P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-1d1721c922f478a16e4cb3ded219d663adffb098edc6e19add7775bc89b0f3603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Asperity</topic><topic>Coatings</topic><topic>Computer simulation</topic><topic>Friction</topic><topic>Mathematical models</topic><topic>Microelectromechanical systems</topic><topic>Monolayers</topic><topic>Parameters</topic><topic>Reconfiguration</topic><topic>Spring constant</topic><topic>Static friction</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shroff, Sameer S.</creatorcontrib><creatorcontrib>Ansari, Naveed</creatorcontrib><creatorcontrib>Robert Ashurst, W.</creatorcontrib><creatorcontrib>de Boer, Maarten P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shroff, Sameer S.</au><au>Ansari, Naveed</au><au>Robert Ashurst, W.</au><au>de Boer, Maarten P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rate-state friction in microelectromechanical systems interfaces: Experiment and theory</atitle><jtitle>Journal of applied physics</jtitle><date>2014-12-28</date><risdate>2014</risdate><volume>116</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>A microscale, multi-asperity frictional test platform has been designed that allows for wide variation of normal load, spring constant, and puller step frequency. Two different monolayer coatings have been applied to the surfaces—tridecafluorotris(dimethylamino)silane (FOTAS, CF3(CF2)5(CH2)2 Si(N(CH3)2)3) and octadecyltrichlorosilane (OTS, CH3(CH2)17SiCl3). Static friction aging was observed for both coatings. Simulating the platform using a modified rate-state model with discrete actuator steps results in good agreement with experiments over a wide control parameter subspace using system parameters extracted from experiments. Experimental and modeling results indicate that (1) contacts strengthen with rest time, exponentially approaching a maximum value and rejuvenating after inertial events, and (2) velocity strengthening is needed to explain the shorter than expected length of slips after the friction block transitions from a stick state. We suggest that aging occurs because tail groups in the monolayer coatings reconfigure readily upon initial contact with an opposing countersurface. The reconfiguration is limited by the constraint that head groups are covalently bound to the substrate.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4904060</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2014-12, Vol.116 (24) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2126487726 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Asperity Coatings Computer simulation Friction Mathematical models Microelectromechanical systems Monolayers Parameters Reconfiguration Spring constant Static friction Substrates |
title | Rate-state friction in microelectromechanical systems interfaces: Experiment and theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rate-state%20friction%20in%20microelectromechanical%20systems%20interfaces:%20Experiment%20and%20theory&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Shroff,%20Sameer%20S.&rft.date=2014-12-28&rft.volume=116&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4904060&rft_dat=%3Cproquest_cross%3E2126487726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126487726&rft_id=info:pmid/&rfr_iscdi=true |