Rate-state friction in microelectromechanical systems interfaces: Experiment and theory
A microscale, multi-asperity frictional test platform has been designed that allows for wide variation of normal load, spring constant, and puller step frequency. Two different monolayer coatings have been applied to the surfaces—tridecafluorotris(dimethylamino)silane (FOTAS, CF3(CF2)5(CH2)2 Si(N(CH...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2014-12, Vol.116 (24) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A microscale, multi-asperity frictional test platform has been designed that allows for wide variation of normal load, spring constant, and puller step frequency. Two different monolayer coatings have been applied to the surfaces—tridecafluorotris(dimethylamino)silane (FOTAS, CF3(CF2)5(CH2)2 Si(N(CH3)2)3) and octadecyltrichlorosilane (OTS, CH3(CH2)17SiCl3). Static friction aging was observed for both coatings. Simulating the platform using a modified rate-state model with discrete actuator steps results in good agreement with experiments over a wide control parameter subspace using system parameters extracted from experiments. Experimental and modeling results indicate that (1) contacts strengthen with rest time, exponentially approaching a maximum value and rejuvenating after inertial events, and (2) velocity strengthening is needed to explain the shorter than expected length of slips after the friction block transitions from a stick state. We suggest that aging occurs because tail groups in the monolayer coatings reconfigure readily upon initial contact with an opposing countersurface. The reconfiguration is limited by the constraint that head groups are covalently bound to the substrate. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4904060 |