Robustly shadowable chain transitive sets and hyperbolicity
We say that a compact invariant set Λ of a C 1 -vector field X on a compact boundaryless Riemannian manifold M is robustly shadowable if it is locally maximal with respect to a neighbourhood U of Λ, and there exists a C 1 -neighbourhood of X such that for any , the continuation Λ Y of Λ for Y and U...
Gespeichert in:
Veröffentlicht in: | Dynamical systems (London, England) England), 2018-10, Vol.33 (4), p.602-621 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 621 |
---|---|
container_issue | 4 |
container_start_page | 602 |
container_title | Dynamical systems (London, England) |
container_volume | 33 |
creator | Bagherzad, Mohammad Reza Lee, Keonhee |
description | We say that a compact invariant set Λ of a C
1
-vector field X on a compact boundaryless Riemannian manifold M is robustly shadowable if it is locally maximal with respect to a neighbourhood U of Λ, and there exists a C
1
-neighbourhood
of X such that for any
, the continuation Λ
Y
of Λ for Y and U is shadowable for Y
t
. In this paper, we prove that any chain transitive set of a C
1
-vector field on M is hyperbolic if and only if it is robustly shadowable. |
doi_str_mv | 10.1080/14689367.2017.1417355 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2126462965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126462965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-f64ab4470f141839c206f8b991443719184431c2a7b0eaaf0aa6167f61ea306b3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfQVjwvDXZZJMNXpTiPygIoucw2SY0ZbupSday396UVo-e3jC892b4IXRN8IzgBt8SxhtJuZhVmIgZYUTQuj5Bk_2-lFTUp38zF-foIsY1zs7sm6C7d6-HmLqxiCtY-h3ozhTtClxfpAB9dMl9myKaFAvol8Vq3Jqgfedal8ZLdGahi-bqqFP0-fT4MX8pF2_Pr_OHRdlWDU-l5Qw0YwLb_FpDZVthbhstJWGMCiJJk5W0FQiNDYDFAJxwYTkxQDHXdIpuDr3b4L8GE5Na-yH0-aSqSMUZrySvs6s-uNrgYwzGqm1wGwijIljtOalfTmrPSR055dz9Ied668MGdj50S5Vg7HywGUHroqL_V_wAFrduIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126462965</pqid></control><display><type>article</type><title>Robustly shadowable chain transitive sets and hyperbolicity</title><source>Business Source Complete</source><creator>Bagherzad, Mohammad Reza ; Lee, Keonhee</creator><creatorcontrib>Bagherzad, Mohammad Reza ; Lee, Keonhee</creatorcontrib><description>We say that a compact invariant set Λ of a C
1
-vector field X on a compact boundaryless Riemannian manifold M is robustly shadowable if it is locally maximal with respect to a neighbourhood U of Λ, and there exists a C
1
-neighbourhood
of X such that for any
, the continuation Λ
Y
of Λ for Y and U is shadowable for Y
t
. In this paper, we prove that any chain transitive set of a C
1
-vector field on M is hyperbolic if and only if it is robustly shadowable.</description><identifier>ISSN: 1468-9367</identifier><identifier>EISSN: 1468-9375</identifier><identifier>DOI: 10.1080/14689367.2017.1417355</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Chain transitive sets ; Chains ; dominated splitting ; hyperbolicity ; Production planning ; Riemann manifold ; robustly shadowing</subject><ispartof>Dynamical systems (London, England), 2018-10, Vol.33 (4), p.602-621</ispartof><rights>2018 Informa UK Limited, trading as Taylor & Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-f64ab4470f141839c206f8b991443719184431c2a7b0eaaf0aa6167f61ea306b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Bagherzad, Mohammad Reza</creatorcontrib><creatorcontrib>Lee, Keonhee</creatorcontrib><title>Robustly shadowable chain transitive sets and hyperbolicity</title><title>Dynamical systems (London, England)</title><description>We say that a compact invariant set Λ of a C
1
-vector field X on a compact boundaryless Riemannian manifold M is robustly shadowable if it is locally maximal with respect to a neighbourhood U of Λ, and there exists a C
1
-neighbourhood
of X such that for any
, the continuation Λ
Y
of Λ for Y and U is shadowable for Y
t
. In this paper, we prove that any chain transitive set of a C
1
-vector field on M is hyperbolic if and only if it is robustly shadowable.</description><subject>Chain transitive sets</subject><subject>Chains</subject><subject>dominated splitting</subject><subject>hyperbolicity</subject><subject>Production planning</subject><subject>Riemann manifold</subject><subject>robustly shadowing</subject><issn>1468-9367</issn><issn>1468-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfQVjwvDXZZJMNXpTiPygIoucw2SY0ZbupSday396UVo-e3jC892b4IXRN8IzgBt8SxhtJuZhVmIgZYUTQuj5Bk_2-lFTUp38zF-foIsY1zs7sm6C7d6-HmLqxiCtY-h3ozhTtClxfpAB9dMl9myKaFAvol8Vq3Jqgfedal8ZLdGahi-bqqFP0-fT4MX8pF2_Pr_OHRdlWDU-l5Qw0YwLb_FpDZVthbhstJWGMCiJJk5W0FQiNDYDFAJxwYTkxQDHXdIpuDr3b4L8GE5Na-yH0-aSqSMUZrySvs6s-uNrgYwzGqm1wGwijIljtOalfTmrPSR055dz9Ied668MGdj50S5Vg7HywGUHroqL_V_wAFrduIw</recordid><startdate>20181002</startdate><enddate>20181002</enddate><creator>Bagherzad, Mohammad Reza</creator><creator>Lee, Keonhee</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20181002</creationdate><title>Robustly shadowable chain transitive sets and hyperbolicity</title><author>Bagherzad, Mohammad Reza ; Lee, Keonhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-f64ab4470f141839c206f8b991443719184431c2a7b0eaaf0aa6167f61ea306b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chain transitive sets</topic><topic>Chains</topic><topic>dominated splitting</topic><topic>hyperbolicity</topic><topic>Production planning</topic><topic>Riemann manifold</topic><topic>robustly shadowing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagherzad, Mohammad Reza</creatorcontrib><creatorcontrib>Lee, Keonhee</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Dynamical systems (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagherzad, Mohammad Reza</au><au>Lee, Keonhee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustly shadowable chain transitive sets and hyperbolicity</atitle><jtitle>Dynamical systems (London, England)</jtitle><date>2018-10-02</date><risdate>2018</risdate><volume>33</volume><issue>4</issue><spage>602</spage><epage>621</epage><pages>602-621</pages><issn>1468-9367</issn><eissn>1468-9375</eissn><abstract>We say that a compact invariant set Λ of a C
1
-vector field X on a compact boundaryless Riemannian manifold M is robustly shadowable if it is locally maximal with respect to a neighbourhood U of Λ, and there exists a C
1
-neighbourhood
of X such that for any
, the continuation Λ
Y
of Λ for Y and U is shadowable for Y
t
. In this paper, we prove that any chain transitive set of a C
1
-vector field on M is hyperbolic if and only if it is robustly shadowable.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/14689367.2017.1417355</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-9367 |
ispartof | Dynamical systems (London, England), 2018-10, Vol.33 (4), p.602-621 |
issn | 1468-9367 1468-9375 |
language | eng |
recordid | cdi_proquest_journals_2126462965 |
source | Business Source Complete |
subjects | Chain transitive sets Chains dominated splitting hyperbolicity Production planning Riemann manifold robustly shadowing |
title | Robustly shadowable chain transitive sets and hyperbolicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustly%20shadowable%20chain%20transitive%20sets%20and%20hyperbolicity&rft.jtitle=Dynamical%20systems%20(London,%20England)&rft.au=Bagherzad,%20Mohammad%20Reza&rft.date=2018-10-02&rft.volume=33&rft.issue=4&rft.spage=602&rft.epage=621&rft.pages=602-621&rft.issn=1468-9367&rft.eissn=1468-9375&rft_id=info:doi/10.1080/14689367.2017.1417355&rft_dat=%3Cproquest_infor%3E2126462965%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126462965&rft_id=info:pmid/&rfr_iscdi=true |