Robustly shadowable chain transitive sets and hyperbolicity

We say that a compact invariant set Λ of a C 1 -vector field X on a compact boundaryless Riemannian manifold M is robustly shadowable if it is locally maximal with respect to a neighbourhood U of Λ, and there exists a C 1 -neighbourhood of X such that for any , the continuation Λ Y of Λ for Y and U...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dynamical systems (London, England) England), 2018-10, Vol.33 (4), p.602-621
Hauptverfasser: Bagherzad, Mohammad Reza, Lee, Keonhee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We say that a compact invariant set Λ of a C 1 -vector field X on a compact boundaryless Riemannian manifold M is robustly shadowable if it is locally maximal with respect to a neighbourhood U of Λ, and there exists a C 1 -neighbourhood of X such that for any , the continuation Λ Y of Λ for Y and U is shadowable for Y t . In this paper, we prove that any chain transitive set of a C 1 -vector field on M is hyperbolic if and only if it is robustly shadowable.
ISSN:1468-9367
1468-9375
DOI:10.1080/14689367.2017.1417355