Neutrino mass without lepton number violation, dark matter; and a strongly first-order phase transition
We propose a model to explain the tiny masses of neutrinos with lepton number conservation, where neither too heavy particles beyond the TeV-scale nor tiny coupling constants are required. Assignments of conserving lepton numbers to new fields result in an unbroken Z2 symmetry that stabilizes the da...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2017-11, Vol.96 (9), Article 095024 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a model to explain the tiny masses of neutrinos with lepton number conservation, where neither too heavy particles beyond the TeV-scale nor tiny coupling constants are required. Assignments of conserving lepton numbers to new fields result in an unbroken Z2 symmetry that stabilizes the dark matter candidate (the lightest Z2-odd particle). In this model, Z2-odd particles play an important role in generating the masses of neutrinos. The scalar dark matter in our model can satisfy constraints on the dark matter abundance and those from direct searches. It is also shown that the strongly first-order phase transition, which is required for electroweak baryogenesis, can be realized in our model. In addition, the scalar potential can in principle contain CP-violating phases, which can also be utilized for baryogenesis. Therefore, three problems in the standard model-namely, the absence of neutrino masses, the dark matter candidate, and the mechanism to generate the baryon asymmetry of the Universe-may be simultaneously resolved at the TeV scale. The phenomenology of this model is also discussed briefly. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.96.095024 |