Testing Brans-Dicke gravity using the Einstein telescope

Gravitational radiation is an excellent field for testing theories of gravity in strong gravitational fields. The current observations on the gravitational-wave (GW) bursts by LIGO have already placed various constraints on the alternative theories of gravity. In this paper, we investigate the possi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2017-06, Vol.95 (12), Article 124008
Hauptverfasser: Zhang, Xing, Yu, Jiming, Liu, Tan, Zhao, Wen, Wang, Anzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gravitational radiation is an excellent field for testing theories of gravity in strong gravitational fields. The current observations on the gravitational-wave (GW) bursts by LIGO have already placed various constraints on the alternative theories of gravity. In this paper, we investigate the possible bounds which could be placed on the Brans-Dicke gravity using GW detection from inspiraling compact binaries with the proposed Einstein Telescope, a third-generation GW detector. We first calculate in detail the waveforms of gravitational radiation in the lowest post-Newtonian approximation, including the tensor and scalar fields, which can be divided into the three polarization modes, i.e., “plus mode,” “cross mode,” and “breathing mode.” Applying the stationary phase approximation, we obtain their Fourier transforms, and derive the correction terms in amplitude, phase, and polarization of GWs, relative to the corresponding results in general relativity. Imposing the noise level of the Einstein Telescope, we find that the GW detection from inspiraling compact binaries, composed of a neutron star and a black hole, can place stringent constraints on the Brans-Dicke gravity. The bound on the coupling constant ωBD depends on the mass, sky position, inclination angle, polarization angle, luminosity distance, redshift distribution, and total observed number NGW of the binary systems. Taking into account all the burst events up to redshift z=5, we find that the bound could be ωBD≳106×(NGW/104)1/2. Even for the conservative estimation with 104 observed events, the bound is still more than one order tighter than the current limit from Solar System experiments. So, we conclude that the Einstein Telescope will provide a powerful platform to test alternative theories of gravity.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.95.124008