Structural Characterization of Mg-0.5Ca-xY Biodegradable Alloys
In recent years, researchers have been able to identify new materials with special properties that can be used in major medical fields. Magnesium-based materials used in orthopedics are an important alternative, being the third generation of biocompatible materials. A biodegradable magnesium-based m...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2018-10, Vol.782, p.129-135 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, researchers have been able to identify new materials with special properties that can be used in major medical fields. Magnesium-based materials used in orthopedics are an important alternative, being the third generation of biocompatible materials. A biodegradable magnesium-based material has the ability to degrade at a certain rate, is biocompatible, and together with other alloying elements ensures osteointegration. Mg-0.5Ca-xY biodegradable alloys will be developed in an induction melting furnace using ceramic crucibles, melting at 710-720 °C in the controlled atmosphere of 5.0 Ar. SEM analyses and X-ray diffraction reveals the size distribution of Mg-sized grains, with a hexagonal lattice and formation of compounds with the two alloying elements: Mg2Ca, Mg2Y, Mg24Y5 uniformly arranged in the α-Mg matrix. The alloying elements influence the microstructure, the size of the α-Mg grains decreasing considerably. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.782.129 |