Design, Fabrication and Characterization of nanoplasmonic lattice for trapping of ultracold atoms
Ultracold atom-traps on a chip enhances the practical application of atom traps in quantum information processing, sensing, and metrology. Plasmon mediated near-field optical potentials are promising for trapping atoms. The combination of plasmonic nanostructures and ultracold atoms has the potentia...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-10 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kumar, Sunil Shah, Manav Ravishankar, Ajith P Vishwakarma, Chetan Dasgupta, Arindam Mangaonkar, Jay Achanta, Venu Gopal Rapol, Umakant D |
description | Ultracold atom-traps on a chip enhances the practical application of atom traps in quantum information processing, sensing, and metrology. Plasmon mediated near-field optical potentials are promising for trapping atoms. The combination of plasmonic nanostructures and ultracold atoms has the potential to create a two dimensional array of neutral atoms with lattice spacing smaller than that of lattices created from interfering light fields -- the optical lattices. We report the design, fabrication and characterization of a nano-scale array of near-field optical traps for neutral atoms using plasmonic nanostructures. The building block of the array is a metallic nano-disc fabricated on the surface of an ITO-coated glass substrate. We numerically simulate the electromagnetic field-distribution using Finite Difference Time Domain method around the nanodisc, and calculate the intensity, optical potential and the dipole force for \(^{87}\)Rb atoms. The optical near-field generated from the fabricated nanostructures is experimentally characterized by using Near-field Scanning Optical Microscopy. We find that the optical potential and dipole force has all the desired characteristics to trap cold atoms when a blue-detuned light-field is used to excite the nanostructures. This trap can be used for effective trapping and manipulation of isolated atoms and also for creating a lattice of neutral atoms having sub-optical wavelength lattice spacing. Near-field measurements are affected by the influence of tip on the sub-wavelength structure. We present a deconvolution method to extract the actual near-field profile from the measured data. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2125326087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125326087</sourcerecordid><originalsourceid>FETCH-proquest_journals_21253260873</originalsourceid><addsrcrecordid>eNqNiksKwjAURYMgWLR7CDi1EBP7mVeLC3BenmlaU9K8mKQTV29FF-DocM89K5JwIY5ZdeJ8Q9IQRsYYL0qe5yIhcFZBD_ZAG7h7LSFqtBRsR-sHeJBRef36SuypBYvOQJjQakkNxKiloj16Gj04p-3wqWazLImmoxBxCjuy7sEElf64JfvmcquvmfP4nFWI7Yizt8vV8iPPBS9YVYr_qjd3AUXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125326087</pqid></control><display><type>article</type><title>Design, Fabrication and Characterization of nanoplasmonic lattice for trapping of ultracold atoms</title><source>Free E- Journals</source><creator>Kumar, Sunil ; Shah, Manav ; Ravishankar, Ajith P ; Vishwakarma, Chetan ; Dasgupta, Arindam ; Mangaonkar, Jay ; Achanta, Venu Gopal ; Rapol, Umakant D</creator><creatorcontrib>Kumar, Sunil ; Shah, Manav ; Ravishankar, Ajith P ; Vishwakarma, Chetan ; Dasgupta, Arindam ; Mangaonkar, Jay ; Achanta, Venu Gopal ; Rapol, Umakant D</creatorcontrib><description>Ultracold atom-traps on a chip enhances the practical application of atom traps in quantum information processing, sensing, and metrology. Plasmon mediated near-field optical potentials are promising for trapping atoms. The combination of plasmonic nanostructures and ultracold atoms has the potential to create a two dimensional array of neutral atoms with lattice spacing smaller than that of lattices created from interfering light fields -- the optical lattices. We report the design, fabrication and characterization of a nano-scale array of near-field optical traps for neutral atoms using plasmonic nanostructures. The building block of the array is a metallic nano-disc fabricated on the surface of an ITO-coated glass substrate. We numerically simulate the electromagnetic field-distribution using Finite Difference Time Domain method around the nanodisc, and calculate the intensity, optical potential and the dipole force for \(^{87}\)Rb atoms. The optical near-field generated from the fabricated nanostructures is experimentally characterized by using Near-field Scanning Optical Microscopy. We find that the optical potential and dipole force has all the desired characteristics to trap cold atoms when a blue-detuned light-field is used to excite the nanostructures. This trap can be used for effective trapping and manipulation of isolated atoms and also for creating a lattice of neutral atoms having sub-optical wavelength lattice spacing. Near-field measurements are affected by the influence of tip on the sub-wavelength structure. We present a deconvolution method to extract the actual near-field profile from the measured data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Arrays ; Atom traps ; Cold atoms ; Cold traps ; Computer simulation ; Data processing ; Dipoles ; Electromagnetic fields ; Finite difference time domain method ; Glass substrates ; Nanostructure ; Neutral atoms ; Optical lattices ; Optical microscopy ; Optical trapping ; Optical traps ; Quantum phenomena ; Quantum theory ; Time domain analysis ; Trapping</subject><ispartof>arXiv.org, 2018-10</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Shah, Manav</creatorcontrib><creatorcontrib>Ravishankar, Ajith P</creatorcontrib><creatorcontrib>Vishwakarma, Chetan</creatorcontrib><creatorcontrib>Dasgupta, Arindam</creatorcontrib><creatorcontrib>Mangaonkar, Jay</creatorcontrib><creatorcontrib>Achanta, Venu Gopal</creatorcontrib><creatorcontrib>Rapol, Umakant D</creatorcontrib><title>Design, Fabrication and Characterization of nanoplasmonic lattice for trapping of ultracold atoms</title><title>arXiv.org</title><description>Ultracold atom-traps on a chip enhances the practical application of atom traps in quantum information processing, sensing, and metrology. Plasmon mediated near-field optical potentials are promising for trapping atoms. The combination of plasmonic nanostructures and ultracold atoms has the potential to create a two dimensional array of neutral atoms with lattice spacing smaller than that of lattices created from interfering light fields -- the optical lattices. We report the design, fabrication and characterization of a nano-scale array of near-field optical traps for neutral atoms using plasmonic nanostructures. The building block of the array is a metallic nano-disc fabricated on the surface of an ITO-coated glass substrate. We numerically simulate the electromagnetic field-distribution using Finite Difference Time Domain method around the nanodisc, and calculate the intensity, optical potential and the dipole force for \(^{87}\)Rb atoms. The optical near-field generated from the fabricated nanostructures is experimentally characterized by using Near-field Scanning Optical Microscopy. We find that the optical potential and dipole force has all the desired characteristics to trap cold atoms when a blue-detuned light-field is used to excite the nanostructures. This trap can be used for effective trapping and manipulation of isolated atoms and also for creating a lattice of neutral atoms having sub-optical wavelength lattice spacing. Near-field measurements are affected by the influence of tip on the sub-wavelength structure. We present a deconvolution method to extract the actual near-field profile from the measured data.</description><subject>Arrays</subject><subject>Atom traps</subject><subject>Cold atoms</subject><subject>Cold traps</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Dipoles</subject><subject>Electromagnetic fields</subject><subject>Finite difference time domain method</subject><subject>Glass substrates</subject><subject>Nanostructure</subject><subject>Neutral atoms</subject><subject>Optical lattices</subject><subject>Optical microscopy</subject><subject>Optical trapping</subject><subject>Optical traps</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Time domain analysis</subject><subject>Trapping</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNiksKwjAURYMgWLR7CDi1EBP7mVeLC3BenmlaU9K8mKQTV29FF-DocM89K5JwIY5ZdeJ8Q9IQRsYYL0qe5yIhcFZBD_ZAG7h7LSFqtBRsR-sHeJBRef36SuypBYvOQJjQakkNxKiloj16Gj04p-3wqWazLImmoxBxCjuy7sEElf64JfvmcquvmfP4nFWI7Yizt8vV8iPPBS9YVYr_qjd3AUXQ</recordid><startdate>20181024</startdate><enddate>20181024</enddate><creator>Kumar, Sunil</creator><creator>Shah, Manav</creator><creator>Ravishankar, Ajith P</creator><creator>Vishwakarma, Chetan</creator><creator>Dasgupta, Arindam</creator><creator>Mangaonkar, Jay</creator><creator>Achanta, Venu Gopal</creator><creator>Rapol, Umakant D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181024</creationdate><title>Design, Fabrication and Characterization of nanoplasmonic lattice for trapping of ultracold atoms</title><author>Kumar, Sunil ; Shah, Manav ; Ravishankar, Ajith P ; Vishwakarma, Chetan ; Dasgupta, Arindam ; Mangaonkar, Jay ; Achanta, Venu Gopal ; Rapol, Umakant D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21253260873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arrays</topic><topic>Atom traps</topic><topic>Cold atoms</topic><topic>Cold traps</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Dipoles</topic><topic>Electromagnetic fields</topic><topic>Finite difference time domain method</topic><topic>Glass substrates</topic><topic>Nanostructure</topic><topic>Neutral atoms</topic><topic>Optical lattices</topic><topic>Optical microscopy</topic><topic>Optical trapping</topic><topic>Optical traps</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Time domain analysis</topic><topic>Trapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Shah, Manav</creatorcontrib><creatorcontrib>Ravishankar, Ajith P</creatorcontrib><creatorcontrib>Vishwakarma, Chetan</creatorcontrib><creatorcontrib>Dasgupta, Arindam</creatorcontrib><creatorcontrib>Mangaonkar, Jay</creatorcontrib><creatorcontrib>Achanta, Venu Gopal</creatorcontrib><creatorcontrib>Rapol, Umakant D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sunil</au><au>Shah, Manav</au><au>Ravishankar, Ajith P</au><au>Vishwakarma, Chetan</au><au>Dasgupta, Arindam</au><au>Mangaonkar, Jay</au><au>Achanta, Venu Gopal</au><au>Rapol, Umakant D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Design, Fabrication and Characterization of nanoplasmonic lattice for trapping of ultracold atoms</atitle><jtitle>arXiv.org</jtitle><date>2018-10-24</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Ultracold atom-traps on a chip enhances the practical application of atom traps in quantum information processing, sensing, and metrology. Plasmon mediated near-field optical potentials are promising for trapping atoms. The combination of plasmonic nanostructures and ultracold atoms has the potential to create a two dimensional array of neutral atoms with lattice spacing smaller than that of lattices created from interfering light fields -- the optical lattices. We report the design, fabrication and characterization of a nano-scale array of near-field optical traps for neutral atoms using plasmonic nanostructures. The building block of the array is a metallic nano-disc fabricated on the surface of an ITO-coated glass substrate. We numerically simulate the electromagnetic field-distribution using Finite Difference Time Domain method around the nanodisc, and calculate the intensity, optical potential and the dipole force for \(^{87}\)Rb atoms. The optical near-field generated from the fabricated nanostructures is experimentally characterized by using Near-field Scanning Optical Microscopy. We find that the optical potential and dipole force has all the desired characteristics to trap cold atoms when a blue-detuned light-field is used to excite the nanostructures. This trap can be used for effective trapping and manipulation of isolated atoms and also for creating a lattice of neutral atoms having sub-optical wavelength lattice spacing. Near-field measurements are affected by the influence of tip on the sub-wavelength structure. We present a deconvolution method to extract the actual near-field profile from the measured data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2125326087 |
source | Free E- Journals |
subjects | Arrays Atom traps Cold atoms Cold traps Computer simulation Data processing Dipoles Electromagnetic fields Finite difference time domain method Glass substrates Nanostructure Neutral atoms Optical lattices Optical microscopy Optical trapping Optical traps Quantum phenomena Quantum theory Time domain analysis Trapping |
title | Design, Fabrication and Characterization of nanoplasmonic lattice for trapping of ultracold atoms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Design,%20Fabrication%20and%20Characterization%20of%20nanoplasmonic%20lattice%20for%20trapping%20of%20ultracold%20atoms&rft.jtitle=arXiv.org&rft.au=Kumar,%20Sunil&rft.date=2018-10-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2125326087%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125326087&rft_id=info:pmid/&rfr_iscdi=true |