Audio-band coating thermal noise measurement for Advanced LIGO with a multimode optical resonator

In modern high precision optical instruments, such as in gravitational wave detectors or frequency references, thermally induced fluctuations in the reflective coatings can be a limiting noise source. This noise, known as coating thermal noise, can be reduced by choosing materials with low mechanica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2017-01, Vol.95 (2), Article 022001
Hauptverfasser: Gras, S., Yu, H., Yam, W., Martynov, D., Evans, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In modern high precision optical instruments, such as in gravitational wave detectors or frequency references, thermally induced fluctuations in the reflective coatings can be a limiting noise source. This noise, known as coating thermal noise, can be reduced by choosing materials with low mechanical loss. Examination of new materials becomes a necessity in order to further minimize the coating thermal noise and thus improve sensitivity of next generation instruments. We present a novel approach to directly measure coating thermal noise using a high finesse folded cavity in which multiple Hermite-Gaussian modes coresonate. This method is used to probe surface fluctuations on the order 10−17  m/Hz in the frequency range 30–400 Hz. We applied this technique to measure thermal noise and loss angle of the coating used in Advanced LIGO.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.95.022001