Using inpainting to construct accurate cut-sky CMB estimators
The direct evaluation of manifestly optimal, cut-sky cosmic microwave background (CMB) power spectrum and bispectrum estimators is numerically very costly, due to the presence of inverse-covariance filtering operations. This justifies the investigation of alternative approaches. In this work, we mos...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2017-02, Vol.95 (4), Article 043532 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The direct evaluation of manifestly optimal, cut-sky cosmic microwave background (CMB) power spectrum and bispectrum estimators is numerically very costly, due to the presence of inverse-covariance filtering operations. This justifies the investigation of alternative approaches. In this work, we mostly focus on an inpainting algorithm that was introduced in recent CMB analyses to cure cut-sky suboptimalities of bispectrum estimators. First, we show that inpainting can equally be applied to the problem of unbiased estimation of power spectra. We then compare the performance of a novel inpainted CMB temperature power spectrum estimator to the popular apodized pseudo-Cl (PCL) method and demonstrate, both numerically and with analytic arguments, that inpainted power spectrum estimates significantly outperform PCL estimates. Finally, we study the case of cut-sky bispectrum estimators, comparing the performance of three different approaches: inpainting, apodization and a novel low-l leaning scheme. Providing an analytic argument of why the local shape is typically most affected we mainly focus on local-type non-Gaussianity. Our results show that inpainting allows us to achieve optimality also for bispectrum estimation, but interestingly also demonstrate that appropriate apodization, in conjunction with low-l cleaning, can lead to comparable accuracy. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.95.043532 |